Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-11-08 DOI:10.1038/s41592-024-02498-x
Alan M Szalai, Giovanni Ferrari, Lars Richter, Jakob Hartmann, Merve-Zeynep Kesici, Bosong Ji, Kush Coshic, Martin R J Dagleish, Annika Jaeger, Aleksei Aksimentiev, Ingrid Tessmer, Izabela Kamińska, Andrés M Vera, Philip Tinnefeld
{"title":"Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope.","authors":"Alan M Szalai, Giovanni Ferrari, Lars Richter, Jakob Hartmann, Merve-Zeynep Kesici, Bosong Ji, Kush Coshic, Martin R J Dagleish, Annika Jaeger, Aleksei Aksimentiev, Ingrid Tessmer, Izabela Kamińska, Andrés M Vera, Philip Tinnefeld","doi":"10.1038/s41592-024-02498-x","DOIUrl":null,"url":null,"abstract":"<p><p>The intricate interplay between DNA and proteins is key for biological functions such as DNA replication, transcription and repair. Dynamic nanoscale observations of DNA structural features are necessary for understanding these interactions. Here we introduce graphene energy transfer with vertical nucleic acids (GETvNA), a method to investigate DNA-protein interactions that exploits the vertical orientation adopted by double-stranded DNA on graphene. This approach enables the dynamic study of DNA conformational changes via energy transfer from a probe dye to graphene, achieving spatial resolution down to the Ångström scale at subsecond temporal resolution. We measured DNA bending induced by adenine tracts, bulges, abasic sites and the binding of endonuclease IV. In addition, we observed the translocation of the O<sup>6</sup>-alkylguanine DNA alkyltransferase on DNA, reaching single base-pair resolution and detecting preferential binding to adenine tracts. This method promises widespread use for dynamical studies of nucleic acids and nucleic acid-protein interactions with resolution so far reserved for traditional structural biology techniques.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02498-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The intricate interplay between DNA and proteins is key for biological functions such as DNA replication, transcription and repair. Dynamic nanoscale observations of DNA structural features are necessary for understanding these interactions. Here we introduce graphene energy transfer with vertical nucleic acids (GETvNA), a method to investigate DNA-protein interactions that exploits the vertical orientation adopted by double-stranded DNA on graphene. This approach enables the dynamic study of DNA conformational changes via energy transfer from a probe dye to graphene, achieving spatial resolution down to the Ångström scale at subsecond temporal resolution. We measured DNA bending induced by adenine tracts, bulges, abasic sites and the binding of endonuclease IV. In addition, we observed the translocation of the O6-alkylguanine DNA alkyltransferase on DNA, reaching single base-pair resolution and detecting preferential binding to adenine tracts. This method promises widespread use for dynamical studies of nucleic acids and nucleic acid-protein interactions with resolution so far reserved for traditional structural biology techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光显微镜上垂直排列 DNA 的单分子动态结构生物学。
DNA 与蛋白质之间错综复杂的相互作用是 DNA 复制、转录和修复等生物功能的关键。要了解这些相互作用,就必须对 DNA 结构特征进行纳米级动态观测。在这里,我们介绍了垂直核酸的石墨烯能量转移(GETvNA),这是一种研究 DNA 蛋白相互作用的方法,它利用了双链 DNA 在石墨烯上的垂直取向。这种方法能够通过探针染料到石墨烯的能量转移动态研究 DNA 的构象变化,在亚秒级的时间分辨率下实现低至 Ångström 级的空间分辨率。我们测量了腺嘌呤束、隆起、消旋位点和内切酶 IV 结合引起的 DNA 弯曲。此外,我们还观察了 DNA 上 O6-烷基鸟嘌呤 DNA 烷基转移酶的转移,达到了单碱基对分辨率,并检测到了与腺嘌呤束的优先结合。这种方法有望广泛应用于核酸动态研究和核酸与蛋白质相互作用的研究,其分辨率迄今为止只能用于传统的结构生物学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Multiplexing strategies to scale up brain organoid modeling. Considerations for building and using integrated single-cell atlases. iFlpMosaics enable the multispectral barcoding and high-throughput comparative analysis of mutant and wild-type cells. Author Correction: Cell Painting: a decade of discovery and innovation in cellular imaging. Moculus: an immersive virtual reality system for mice incorporating stereo vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1