Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-10-30 DOI:10.3390/molecules29215127
Yaxin An, Fu Li, Youbo Di, Xiangbing Zhang, Jianjun Lu, Le Wang, Zhifeng Yan, Wei Wang, Mei Liu, Pengfei Fei
{"title":"Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review.","authors":"Yaxin An, Fu Li, Youbo Di, Xiangbing Zhang, Jianjun Lu, Le Wang, Zhifeng Yan, Wei Wang, Mei Liu, Pengfei Fei","doi":"10.3390/molecules29215127","DOIUrl":null,"url":null,"abstract":"<p><p>With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215127","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
醋酸纤维素的疏水改性及其在水处理领域的应用:综述。
随着膜蒸馏和单向导湿等工艺对疏水材料的内在需求,具有疏水功能和生物特性的改性醋酸纤维素膜等型材的制备和应用开发成为研究热点。与传统疏水膜制备中使用的石化高分子材料相比,醋酸纤维素作为最重要的纤维素衍生物,具有天然丰度高、成膜性好、易改性和生物降解等诸多优点,是一种很有发展前景的环境净化高分子原料。本文重点介绍了疏水性醋酸纤维素制备工艺的研究进展及其在水处理和资源利用领域的应用现状。详细介绍和比较了疏水改性醋酸纤维素的微纳米结构和化学功能表面构建的技术特点、存在问题和发展趋势。对疏水性醋酸纤维素膜及其他型材在油水分离、盐水淡化、憎水防护材料及其他分离/过滤领域的应用进行了进一步的综述和阐述。在分析疏水醋酸纤维素膜等型材产品的技术和性能优势的基础上,指出了疏水醋酸纤维素膜进一步发展亟待解决的关键问题。这将为高性能醋酸纤维素膜产品在环境领域的扩展和应用提供参考依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Selectivity Control in Nitroaldol (Henry) Reaction by Changing the Basic Anion in a Chiral Copper(II) Complex Based on (S)-2-Aminomethylpyrrolidine and 3,5-Di-tert-butylsalicylaldehyde. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Enhanced Degradation of Norfloxacin Under Visible Light by S-Scheme Fe2O3/g-C3N4 Heterojunctions. Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1