Miguel Sampaio, Sofia Santos, Ana Marta Jesus, José Pissarra, Gian Pietro Di Sansebastiano, Jonas Alvim, Cláudia Pereira
{"title":"Interaction Dynamics of Plant-Specific Insert Domains from <i>Cynara cardunculus</i>: A Study of Homo- and Heterodimer Formation.","authors":"Miguel Sampaio, Sofia Santos, Ana Marta Jesus, José Pissarra, Gian Pietro Di Sansebastiano, Jonas Alvim, Cláudia Pereira","doi":"10.3390/molecules29215139","DOIUrl":null,"url":null,"abstract":"<p><p>Plant aspartic proteinases (APs) from <i>Cynara cardunculus</i> feature unique plant-specific insert (PSI) domains, which serve as essential vacuolar sorting determinants, mediating the transport of proteins to the vacuole. Although their role in vacuolar trafficking is well established, the exact molecular mechanisms that regulate PSI interactions and functions remain largely unknown. This study explores the ability of PSI A and PSI B to form homo- and heterodimers using a combination of pull-down assays, the mating-based split-ubiquitin system (mbSUS), and FRET-FLIM analyses. Pull-down assays provided preliminary evidence of potential PSI homo- and heterodimer formation. This was conclusively validated by the more robust in vivo mbSUS and FRET-FLIM assays, which clearly demonstrated the formation of both homo- and heterodimers between PSI A and PSI B within cellular environments. These findings suggest that PSI dimerization is related to their broader functional role, particularly in protein trafficking. Results open new avenues for future research to explore the full extent of PSI dimerization and its implications in plant cellular processes.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215139","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant aspartic proteinases (APs) from Cynara cardunculus feature unique plant-specific insert (PSI) domains, which serve as essential vacuolar sorting determinants, mediating the transport of proteins to the vacuole. Although their role in vacuolar trafficking is well established, the exact molecular mechanisms that regulate PSI interactions and functions remain largely unknown. This study explores the ability of PSI A and PSI B to form homo- and heterodimers using a combination of pull-down assays, the mating-based split-ubiquitin system (mbSUS), and FRET-FLIM analyses. Pull-down assays provided preliminary evidence of potential PSI homo- and heterodimer formation. This was conclusively validated by the more robust in vivo mbSUS and FRET-FLIM assays, which clearly demonstrated the formation of both homo- and heterodimers between PSI A and PSI B within cellular environments. These findings suggest that PSI dimerization is related to their broader functional role, particularly in protein trafficking. Results open new avenues for future research to explore the full extent of PSI dimerization and its implications in plant cellular processes.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.