Lycopene-Loaded Emulsions: Chitosan Versus Non-Ionic Surfactants as Stabilizers.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-11-04 DOI:10.3390/molecules29215209
Sonia Álvarez-García, Lucie Couarraze, María Matos, Gemma Gutiérrez
{"title":"Lycopene-Loaded Emulsions: Chitosan Versus Non-Ionic Surfactants as Stabilizers.","authors":"Sonia Álvarez-García, Lucie Couarraze, María Matos, Gemma Gutiérrez","doi":"10.3390/molecules29215209","DOIUrl":null,"url":null,"abstract":"<p><p>Lycopene is a natural carotenoid with well-known benefits due to its antioxidant properties, including an anti-inflammatory effect in colorectal cancer and anti-angiogenic effects along with a reduction in the risk of prostate cancer and coronary heart disease. Due to their poor water solubility, photosensitivity and heat sensitivity, their incorporation in cosmetic and food matrices should be through encapsulation systems. In the present work, lycopene-loaded emulsions were prepared using two different types of stabilizers: non-ionic surfactants, testing several ratios of Tween 80 and Span 80, and chitosan, using chitosans of different viscosities and molecular weights. Soybean oil was found to be a suitable candidate for O/W emulsion preparation. Lycopene encapsulation efficiency (EE) of 70-75% and loading capacities of 0.14 mg/g were registered in stable emulsions stabilized either by non-ionic surfactants or acidified chitosans. Therefore, chitosan is a good alternative as a sustainable stabilizer to partially replace traditional synthetic ingredients with a new biodegradable, renewable and biocompatible material which could contribute to reduce the environmental impact as well as the ingestion of synthetic toxic materials by humans, decreasing their risk of suffering from chronic and complex pathologies, among which several types of cancer stand out.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215209","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lycopene is a natural carotenoid with well-known benefits due to its antioxidant properties, including an anti-inflammatory effect in colorectal cancer and anti-angiogenic effects along with a reduction in the risk of prostate cancer and coronary heart disease. Due to their poor water solubility, photosensitivity and heat sensitivity, their incorporation in cosmetic and food matrices should be through encapsulation systems. In the present work, lycopene-loaded emulsions were prepared using two different types of stabilizers: non-ionic surfactants, testing several ratios of Tween 80 and Span 80, and chitosan, using chitosans of different viscosities and molecular weights. Soybean oil was found to be a suitable candidate for O/W emulsion preparation. Lycopene encapsulation efficiency (EE) of 70-75% and loading capacities of 0.14 mg/g were registered in stable emulsions stabilized either by non-ionic surfactants or acidified chitosans. Therefore, chitosan is a good alternative as a sustainable stabilizer to partially replace traditional synthetic ingredients with a new biodegradable, renewable and biocompatible material which could contribute to reduce the environmental impact as well as the ingestion of synthetic toxic materials by humans, decreasing their risk of suffering from chronic and complex pathologies, among which several types of cancer stand out.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
番茄红素乳液:壳聚糖与作为稳定剂的非离子表面活性剂的对比。
番茄红素是一种天然类胡萝卜素,具有众所周知的抗氧化功效,包括对结直肠癌的抗炎作用、抗血管生成作用以及降低前列腺癌和冠心病的风险。由于番茄红素的水溶性差、光敏性和热敏性,因此应通过封装系统将其添加到化妆品和食品基质中。在本研究中,我们使用两种不同类型的稳定剂制备了番茄红素乳液:一种是非离子表面活性剂,测试了 Tween 80 和 Span 80 的不同比例;另一种是壳聚糖,使用了不同粘度和分子量的壳聚糖。结果发现,大豆油是一种适合用于制备 O/W 型乳液的候选物质。在由非离子表面活性剂或酸化壳聚糖稳定的稳定乳液中,番茄红素的封装效率(EE)为 70-75%,负载能力为 0.14 mg/g。因此,壳聚糖是一种很好的可持续稳定剂替代品,它可以用一种可生物降解、可再生和生物兼容的新材料部分取代传统的合成成分,从而有助于减少对环境的影响以及人类对合成有毒材料的摄入,降低他们患慢性和复杂病症的风险,其中包括几种癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Selectivity Control in Nitroaldol (Henry) Reaction by Changing the Basic Anion in a Chiral Copper(II) Complex Based on (S)-2-Aminomethylpyrrolidine and 3,5-Di-tert-butylsalicylaldehyde. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Enhanced Degradation of Norfloxacin Under Visible Light by S-Scheme Fe2O3/g-C3N4 Heterojunctions. Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1