Noa I Bass, Mruga Y Parekh, Prabodh Satyal, Subah Soni, Jive A Jacob, James P Mack, Dorothy E Lobo
{"title":"Manuka Essential Oil Triggers Apoptosis and Activation of c-Jun N-Terminal Kinase in Fibroblasts and Fibrosarcoma Cells.","authors":"Noa I Bass, Mruga Y Parekh, Prabodh Satyal, Subah Soni, Jive A Jacob, James P Mack, Dorothy E Lobo","doi":"10.3390/molecules29215168","DOIUrl":null,"url":null,"abstract":"<p><p>Manuka essential oil has long been used in traditional medicine, though the effects of the oil on cancer cells have limited studies. The goal of this project was to treat cancer cell lines with manuka essential oil at different concentrations and to ascertain the effects on the cell proliferation of normal fibroblast (CUA-4) and on fibrosarcoma (HT-1080) cells. Cell lines were grown on 24-well plates, and subconfluent cultures were treated with varying concentrations of manuka oil for 24 h. The effect of the oil on proliferation and viability was measured through direct cell counting using trypan blue dye exclusion and through the use of an MTT assay. As the concentration of oil increased, proliferation of all cell lines tested decreased with increasing dosage, concurrently with a decrease in MTT activity. To determine if the decrease in cell numbers observed from manuka oil treatment is the result of apoptosis, PARP cleavage assays were performed, confirming that the treatment caused apoptosis in both normal fibroblasts and fibrosarcoma cells. The stress-activated MAPK protein, JNK, was activated by manuka essential oil treatment, occurring synergistically with a decrease in MKP-1 expression.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215168","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Manuka essential oil has long been used in traditional medicine, though the effects of the oil on cancer cells have limited studies. The goal of this project was to treat cancer cell lines with manuka essential oil at different concentrations and to ascertain the effects on the cell proliferation of normal fibroblast (CUA-4) and on fibrosarcoma (HT-1080) cells. Cell lines were grown on 24-well plates, and subconfluent cultures were treated with varying concentrations of manuka oil for 24 h. The effect of the oil on proliferation and viability was measured through direct cell counting using trypan blue dye exclusion and through the use of an MTT assay. As the concentration of oil increased, proliferation of all cell lines tested decreased with increasing dosage, concurrently with a decrease in MTT activity. To determine if the decrease in cell numbers observed from manuka oil treatment is the result of apoptosis, PARP cleavage assays were performed, confirming that the treatment caused apoptosis in both normal fibroblasts and fibrosarcoma cells. The stress-activated MAPK protein, JNK, was activated by manuka essential oil treatment, occurring synergistically with a decrease in MKP-1 expression.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.