{"title":"On the Nature of the Interactions That Govern COV-2 Mutants Escape from Neutralizing Antibodies.","authors":"Fredy Sussman, Daniel S Villaverde","doi":"10.3390/molecules29215206","DOIUrl":null,"url":null,"abstract":"<p><p>The most fruitful prevention and treatment tools for the COVID-19 pandemic have proven to be vaccines and therapeutic antibodies, which have reduced the spread of the disease to manageable proportions. The search for the most effective antibodies against the widest set of COV-2 variants has required a long time and substantial resources. It would be desirable to have a tool that will enable us to understand the structural basis on which mutants escape at least some of the epitope-bound antibodies, a tool that may substantially reduce the time and resources invested in this effort. In this work, we applied a computational-based tool (employed previously by us to understand COV-2 spike binding to its cognate cell receptor) to the study of the effect of Delta and Omicron mutations on the escape tendencies. Our binding energy predictions agree extremely well with the experimentally observed escape tendencies. They have also allowed us to set forth a structural explanation for the results that could be used for the screening of antibodies. Lastly, our results explain the differences in molecular interactions that govern interaction of the spike variants with the receptor as opposed to those with antibodies.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215206","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The most fruitful prevention and treatment tools for the COVID-19 pandemic have proven to be vaccines and therapeutic antibodies, which have reduced the spread of the disease to manageable proportions. The search for the most effective antibodies against the widest set of COV-2 variants has required a long time and substantial resources. It would be desirable to have a tool that will enable us to understand the structural basis on which mutants escape at least some of the epitope-bound antibodies, a tool that may substantially reduce the time and resources invested in this effort. In this work, we applied a computational-based tool (employed previously by us to understand COV-2 spike binding to its cognate cell receptor) to the study of the effect of Delta and Omicron mutations on the escape tendencies. Our binding energy predictions agree extremely well with the experimentally observed escape tendencies. They have also allowed us to set forth a structural explanation for the results that could be used for the screening of antibodies. Lastly, our results explain the differences in molecular interactions that govern interaction of the spike variants with the receptor as opposed to those with antibodies.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.