On the Nature of the Interactions That Govern COV-2 Mutants Escape from Neutralizing Antibodies.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-11-04 DOI:10.3390/molecules29215206
Fredy Sussman, Daniel S Villaverde
{"title":"On the Nature of the Interactions That Govern COV-2 Mutants Escape from Neutralizing Antibodies.","authors":"Fredy Sussman, Daniel S Villaverde","doi":"10.3390/molecules29215206","DOIUrl":null,"url":null,"abstract":"<p><p>The most fruitful prevention and treatment tools for the COVID-19 pandemic have proven to be vaccines and therapeutic antibodies, which have reduced the spread of the disease to manageable proportions. The search for the most effective antibodies against the widest set of COV-2 variants has required a long time and substantial resources. It would be desirable to have a tool that will enable us to understand the structural basis on which mutants escape at least some of the epitope-bound antibodies, a tool that may substantially reduce the time and resources invested in this effort. In this work, we applied a computational-based tool (employed previously by us to understand COV-2 spike binding to its cognate cell receptor) to the study of the effect of Delta and Omicron mutations on the escape tendencies. Our binding energy predictions agree extremely well with the experimentally observed escape tendencies. They have also allowed us to set forth a structural explanation for the results that could be used for the screening of antibodies. Lastly, our results explain the differences in molecular interactions that govern interaction of the spike variants with the receptor as opposed to those with antibodies.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215206","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The most fruitful prevention and treatment tools for the COVID-19 pandemic have proven to be vaccines and therapeutic antibodies, which have reduced the spread of the disease to manageable proportions. The search for the most effective antibodies against the widest set of COV-2 variants has required a long time and substantial resources. It would be desirable to have a tool that will enable us to understand the structural basis on which mutants escape at least some of the epitope-bound antibodies, a tool that may substantially reduce the time and resources invested in this effort. In this work, we applied a computational-based tool (employed previously by us to understand COV-2 spike binding to its cognate cell receptor) to the study of the effect of Delta and Omicron mutations on the escape tendencies. Our binding energy predictions agree extremely well with the experimentally observed escape tendencies. They have also allowed us to set forth a structural explanation for the results that could be used for the screening of antibodies. Lastly, our results explain the differences in molecular interactions that govern interaction of the spike variants with the receptor as opposed to those with antibodies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于COV-2突变体逃避中和抗体的相互作用的性质
事实证明,COVID-19 大流行病最有效的预防和治疗工具是疫苗和治疗性抗体,它们将疾病的传播降低到了可控范围。针对最广泛的 COV-2 变体寻找最有效的抗体需要很长的时间和大量的资源。我们希望有一种工具能让我们了解突变体逃避至少部分表位结合抗体的结构基础,这种工具可能会大大减少这项工作所投入的时间和资源。在这项工作中,我们应用了一种基于计算的工具(我们以前曾用它来理解 COV-2 尖峰与其同源细胞受体的结合)来研究 Delta 和 Omicron 突变对逃避倾向的影响。我们的结合能预测与实验观察到的逸出趋势非常吻合。这也使我们能够从结构上解释这些结果,并可用于筛选抗体。最后,我们的结果解释了分子相互作用的差异,即尖峰变体与受体的相互作用不同于与抗体的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Selectivity Control in Nitroaldol (Henry) Reaction by Changing the Basic Anion in a Chiral Copper(II) Complex Based on (S)-2-Aminomethylpyrrolidine and 3,5-Di-tert-butylsalicylaldehyde. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Enhanced Degradation of Norfloxacin Under Visible Light by S-Scheme Fe2O3/g-C3N4 Heterojunctions. Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1