Peptide Dimerization as a Strategy for the Development of Antileishmanial Compounds.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-10-31 DOI:10.3390/molecules29215170
Natália C S Coelho, Deivys L F Portuondo, Jhonatan Lima, Angela M A Velásquez, Valéria Valente, Iracilda Z Carlos, Eduardo M Cilli, Márcia A S Graminha
{"title":"Peptide Dimerization as a Strategy for the Development of Antileishmanial Compounds.","authors":"Natália C S Coelho, Deivys L F Portuondo, Jhonatan Lima, Angela M A Velásquez, Valéria Valente, Iracilda Z Carlos, Eduardo M Cilli, Márcia A S Graminha","doi":"10.3390/molecules29215170","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action. Herein, it was demonstrated that the dimerization of the peptide TSHa, (TSHa)<sub>2</sub>K, presented higher potency and selectivity than its monomeric form when evaluated against <i>Leishmania mexicana</i> and <i>Leishmania amazonensis</i>. Furthermore, these compounds are capable of inhibiting the parasite cysteine protease, an important target explored for the development of antileishmanial compounds, as well as to selectively interact with the parasite membranes, as demonstrated by flow cytometry, permeabilization, and fluorescence microscopy experiments. Based on this, the identified molecules are candidates for use in in vivo studies with animal models to combat leishmaniasis.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215170","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action. Herein, it was demonstrated that the dimerization of the peptide TSHa, (TSHa)2K, presented higher potency and selectivity than its monomeric form when evaluated against Leishmania mexicana and Leishmania amazonensis. Furthermore, these compounds are capable of inhibiting the parasite cysteine protease, an important target explored for the development of antileishmanial compounds, as well as to selectively interact with the parasite membranes, as demonstrated by flow cytometry, permeabilization, and fluorescence microscopy experiments. Based on this, the identified molecules are candidates for use in in vivo studies with animal models to combat leishmaniasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将多肽二聚化作为开发抗利什曼病化合物的一种策略。
利什曼病是巴西和全世界公认的严重公共卫生问题。用于治疗的药物有限,加上副作用的多样性和抗药性菌株的出现,表明了研究重点放在开发新分子上的重要性,从而有助于治疗。因此,这项工作旨在利用多肽二聚化策略鉴定利什曼杀虫化合物,并了解其作用机制。研究表明,在对墨西哥利什曼原虫和亚马逊利什曼原虫进行评估时,肽 TSHa 的二聚体 (TSHa)2K 比其单体形式具有更高的效力和选择性。此外,这些化合物还能抑制寄生虫半胱氨酸蛋白酶(这是开发抗利什曼病化合物的一个重要目标),并能选择性地与寄生虫膜相互作用,流式细胞仪、渗透和荧光显微镜实验均证明了这一点。在此基础上,确定的分子可用于抗利什曼病动物模型的体内研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Selectivity Control in Nitroaldol (Henry) Reaction by Changing the Basic Anion in a Chiral Copper(II) Complex Based on (S)-2-Aminomethylpyrrolidine and 3,5-Di-tert-butylsalicylaldehyde. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Enhanced Degradation of Norfloxacin Under Visible Light by S-Scheme Fe2O3/g-C3N4 Heterojunctions. Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1