Orientation-independent quantification of macromolecular proton fraction in tissues with suppression of residual dipolar coupling.

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2024-11-13 DOI:10.1002/nbm.5293
Zijian Gao, Ziqiang Yu, Ziqin Zhou, Jian Hou, Baiyan Jiang, Michael Ong, Weitian Chen
{"title":"Orientation-independent quantification of macromolecular proton fraction in tissues with suppression of residual dipolar coupling.","authors":"Zijian Gao, Ziqiang Yu, Ziqin Zhou, Jian Hou, Baiyan Jiang, Michael Ong, Weitian Chen","doi":"10.1002/nbm.5293","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons. In this study, we demonstrated the confounding effect of RDC on quantitative MT imaging in ordered tissues can be suppressed by using an emerging technique known as macromolecular proton fraction mapping based on spin-lock (MPF-SL). The off-resonance spin-lock RF pulse in MPF-SL could be designed to generate a strong effective spin-lock field to suppress RDC without violating the specific absorption rate and hardware limitations in clinical scans. Furthermore, suppressing the water pool contribution in MPF-SL enabled the application of a strong effective spin-lock field without confounding effects from direct water saturation. Our findings were experimentally validated using human knee specimens and healthy human cartilage. The results demonstrated that MPF-SL exhibits lower sensitivity to tissue orientation compared with <math> <semantics> <mrow><msub><mi>R</mi> <mn>2</mn></msub> </mrow> <annotation>$$ {R}_2 $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>R</mi> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {R}_{1\\rho } $$</annotation></semantics> </math> , and saturation-pulse-based MT imaging. Consequently, MPF-SL could serve as a valuable orientation-independent technique for the quantification of MPF.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5293"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons. In this study, we demonstrated the confounding effect of RDC on quantitative MT imaging in ordered tissues can be suppressed by using an emerging technique known as macromolecular proton fraction mapping based on spin-lock (MPF-SL). The off-resonance spin-lock RF pulse in MPF-SL could be designed to generate a strong effective spin-lock field to suppress RDC without violating the specific absorption rate and hardware limitations in clinical scans. Furthermore, suppressing the water pool contribution in MPF-SL enabled the application of a strong effective spin-lock field without confounding effects from direct water saturation. Our findings were experimentally validated using human knee specimens and healthy human cartilage. The results demonstrated that MPF-SL exhibits lower sensitivity to tissue orientation compared with R 2 $$ {R}_2 $$ , R 1 ρ $$ {R}_{1\rho } $$ , and saturation-pulse-based MT imaging. Consequently, MPF-SL could serve as a valuable orientation-independent technique for the quantification of MPF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过抑制残余偶极耦合,对组织中的大分子质子部分进行与方向无关的定量。
定量磁化传递(MT)成像可对组织的大分子环境进行无创表征。然而,最近的研究突出表明,使用饱和射频(RF)脉冲量化 MT 参数在有序组织结构中表现出取向依赖性,可能会影响其临床应用。值得注意的是,在具有有序结构的组织中,如关节软骨和髓鞘,由于水质子的双极-双极相互作用未完全平均,可能会产生残余双极耦合(RDC)效应。在这项研究中,我们利用一种被称为基于自旋锁定的大分子质子分数图谱(MPF-SL)的新兴技术,证明了 RDC 对有序组织中 MT 定量成像的干扰效应是可以抑制的。MPF-SL 中的非共振自旋锁定射频脉冲可以设计成产生强大的有效自旋锁定场,从而抑制 RDC,而不会违反特定吸收率和临床扫描中的硬件限制。此外,在 MPF-SL 中抑制水池的贡献可以应用强有效自旋锁定场,而不会受到直接水饱和的干扰。我们利用人体膝关节标本和健康人的软骨对研究结果进行了实验验证。结果表明,与 R 2 $$ {R}_2 $$ 、R 1 ρ $$ {R}_{1\rho }$ 和饱和脉冲相比,MPF-SL 对组织取向的敏感性更低。$$ 和基于饱和脉冲的 MT 成像相比,MPF-SL 对组织方向的敏感性更低。因此,MPF-SL 可以作为一种有价值的、与取向无关的 MPF 定量技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort. Improvement of MRS at ultra-high field using a wireless RF array. Very-long T2-weighted imaging of the non-lesional brain tissue in multiple sclerosis patients. Simultaneous whole-liver water T 1 and T 2 mapping with isotropic resolution during free-breathing. Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1