Ye Zhang, Wei Duan, Lingchao Chen, Junrui Chen, Wei Xu, Qi Fan, Shuwei Li, Yuandong Liu, Shidi Wang, Quansheng He, Xiaohui Li, Yang Huang, Haibao Peng, Jiaxu Zhao, Qiangqiang Zhang, Zhixin Qiu, Zhicheng Shao, Bo Zhang, Yihua Wang, Yang Tian, Yousheng Shu, Zhiyong Qin, Yudan Chi
{"title":"Potassium ion channel modulation at cancer-neural interface enhances neuronal excitability in epileptogenic glioblastoma multiforme.","authors":"Ye Zhang, Wei Duan, Lingchao Chen, Junrui Chen, Wei Xu, Qi Fan, Shuwei Li, Yuandong Liu, Shidi Wang, Quansheng He, Xiaohui Li, Yang Huang, Haibao Peng, Jiaxu Zhao, Qiangqiang Zhang, Zhixin Qiu, Zhicheng Shao, Bo Zhang, Yihua Wang, Yang Tian, Yousheng Shu, Zhiyong Qin, Yudan Chi","doi":"10.1016/j.neuron.2024.10.016","DOIUrl":null,"url":null,"abstract":"<p><p>The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K<sup>+</sup> channel K<sub>V</sub>4.2, enhancing neuronal excitability via accumulation of extracellular K<sup>+</sup>, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"225-243.e10"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.10.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K+ channel KV4.2, enhancing neuronal excitability via accumulation of extracellular K+, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.