{"title":"Two-Dimensional ABS<sub>4</sub> (A and B = Zr, Hf, and Ti) as Promising Anode for Li and Na-Ion Batteries.","authors":"Shehzad Ahmed, Imran Muhammad, Awais Ghani, Iltaf Muhammad, Naeem Ullah, Nadeem Raza, Yong Wang, Xiaoqing Tian, Honglei Wu, Danish Khan","doi":"10.3390/molecules29215208","DOIUrl":null,"url":null,"abstract":"<p><p>Metal ion intercalation into van der Waals gaps of layered materials is vital for large-scale electrochemical energy storage. Transition-metal sulfides, ABS<sub>4</sub> (where A and B represent Zr, Hf, and Ti as monolayers as anodes), are examined as lithium and sodium ion storage. Our study reveals that these monolayers offer exceptional performance for ion storage. The low diffusion barriers enable efficient lithium bonding and rapid separation while all ABS<sub>4</sub> phases remain semiconducting before lithiation and transition to metallic states, ensuring excellent electrical conductivity. Notably, the monolayers demonstrate impressive ion capacities: 1639, 1202, and 1119 mAh/g for Li-ions, and 1093, 801, and 671 mAh/g for Na-ions in ZrTiS<sub>4</sub>, HfTiS<sub>4</sub>, and HfZrS<sub>4</sub>, respectively. Average voltages are 1.16 V, 0.9 V, and 0.94 V for Li-ions and 1.17 V, 1.02 V, and 0.94 V for Na-ions across these materials. Additionally, low migration energy barriers of 0.231 eV, 0.233 eV, and 0.238 eV for Li and 0.135 eV, 0.136 eV, and 0.147 eV for Na make ABS<sub>4</sub> monolayers highly attractive for battery applications. These findings underscore the potential of monolayer ABS<sub>4</sub> as a superior electrode material, combining high adsorption energy, low diffusion barriers, low voltage, high specific capacity, and outstanding electrical conductivity.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215208","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal ion intercalation into van der Waals gaps of layered materials is vital for large-scale electrochemical energy storage. Transition-metal sulfides, ABS4 (where A and B represent Zr, Hf, and Ti as monolayers as anodes), are examined as lithium and sodium ion storage. Our study reveals that these monolayers offer exceptional performance for ion storage. The low diffusion barriers enable efficient lithium bonding and rapid separation while all ABS4 phases remain semiconducting before lithiation and transition to metallic states, ensuring excellent electrical conductivity. Notably, the monolayers demonstrate impressive ion capacities: 1639, 1202, and 1119 mAh/g for Li-ions, and 1093, 801, and 671 mAh/g for Na-ions in ZrTiS4, HfTiS4, and HfZrS4, respectively. Average voltages are 1.16 V, 0.9 V, and 0.94 V for Li-ions and 1.17 V, 1.02 V, and 0.94 V for Na-ions across these materials. Additionally, low migration energy barriers of 0.231 eV, 0.233 eV, and 0.238 eV for Li and 0.135 eV, 0.136 eV, and 0.147 eV for Na make ABS4 monolayers highly attractive for battery applications. These findings underscore the potential of monolayer ABS4 as a superior electrode material, combining high adsorption energy, low diffusion barriers, low voltage, high specific capacity, and outstanding electrical conductivity.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.