PolyASite v3.0: a multi-species atlas of polyadenylation sites inferred from single-cell RNA-sequencing data.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-11-12 DOI:10.1093/nar/gkae1043
Youngbin Moon, Christina J Herrmann, Aleksei Mironov, Mihaela Zavolan
{"title":"PolyASite v3.0: a multi-species atlas of polyadenylation sites inferred from single-cell RNA-sequencing data.","authors":"Youngbin Moon, Christina J Herrmann, Aleksei Mironov, Mihaela Zavolan","doi":"10.1093/nar/gkae1043","DOIUrl":null,"url":null,"abstract":"<p><p>The broadly used 10X Genomics technology for single-cell RNA sequencing (scRNA-seq) captures RNA 3' ends. Thus, some reads contain part of the non-templated polyadenosine tails, providing direct evidence for the sites of 3' end cleavage and polyadenylation on the respective RNAs. Taking advantage of this property, we recently developed the SCINPAS workflow to infer polyadenylation sites (PASs) from scRNA-seq data. Here, we used this workflow to construct version 3.0 (v3.0, https://polyasite.unibas.ch/) of the PolyASite Atlas from a big compendium of publicly available human, mouse and worm scRNA-seq datasets obtained from healthy tissues. As the resolution of scRNA-seq was too low for robust detection of cell-level differences in PAS usage, we aggregated samples based on their tissue-of-origin to construct tissue-level catalogs of PASs. These provide qualitatively new information about PAS usage, in comparison to the previous PAS catalogs that were based on bulk 3' end sequencing experiments primarily in cell lines. In the new version, we document stringency levels associated with each PAS so that users can balance sensitivity and specificity in their analysis. We also upgraded the integration with the UCSC Genome Browser and developed track hubs conveniently displaying pooled and tissue-specific expression of PASs.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The broadly used 10X Genomics technology for single-cell RNA sequencing (scRNA-seq) captures RNA 3' ends. Thus, some reads contain part of the non-templated polyadenosine tails, providing direct evidence for the sites of 3' end cleavage and polyadenylation on the respective RNAs. Taking advantage of this property, we recently developed the SCINPAS workflow to infer polyadenylation sites (PASs) from scRNA-seq data. Here, we used this workflow to construct version 3.0 (v3.0, https://polyasite.unibas.ch/) of the PolyASite Atlas from a big compendium of publicly available human, mouse and worm scRNA-seq datasets obtained from healthy tissues. As the resolution of scRNA-seq was too low for robust detection of cell-level differences in PAS usage, we aggregated samples based on their tissue-of-origin to construct tissue-level catalogs of PASs. These provide qualitatively new information about PAS usage, in comparison to the previous PAS catalogs that were based on bulk 3' end sequencing experiments primarily in cell lines. In the new version, we document stringency levels associated with each PAS so that users can balance sensitivity and specificity in their analysis. We also upgraded the integration with the UCSC Genome Browser and developed track hubs conveniently displaying pooled and tissue-specific expression of PASs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PolyASite v3.0:从单细胞 RNA 序列数据推断出的多腺苷酸化位点多物种图谱。
广泛使用的 10X Genomics 单细胞 RNA 测序(scRNA-seq)技术可捕获 RNA 3' 端。因此,一些读数包含了部分非模板多聚腺苷尾,为相应 RNA 的 3' 端裂解和多聚腺苷化位点提供了直接证据。利用这一特性,我们最近开发了 SCINPAS 工作流程,从 scRNA-seq 数据中推断多腺苷酸化位点(PAS)。在这里,我们利用这一工作流程,从从健康组织中获取的大量公开可用的人类、小鼠和蠕虫scRNA-seq数据集中构建了PolyASite Atlas的3.0版本(v3.0,https://polyasite.unibas.ch/)。由于 scRNA-seq 的分辨率太低,无法稳健地检测 PAS 使用的细胞级差异,因此我们根据样本的原生组织对样本进行了汇总,以构建组织级的 PAS 目录。与之前基于主要在细胞系中进行的大量 3' 端测序实验的 PAS 目录相比,这些目录提供了有关 PAS 使用情况的新的定性信息。在新版本中,我们记录了与每个 PAS 相关的严格程度,以便用户在分析中平衡灵敏度和特异性。我们还升级了与 UCSC 基因组浏览器的整合,并开发了跟踪中心,方便显示 PAS 的集合表达和组织特异性表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Deep learning insights into distinct patterns of polygenic adaptation across human populations. Single-stranded DNA with internal base modifications mediates highly efficient knock-in in primary cells using CRISPR-Cas9 Dimerization of the deaminase domain and locking interactions with Cas9 boost base editing efficiency in ABE8e. CATH v4.4: major expansion of CATH by experimental and predicted structural data L1-ORF1p nucleoprotein can rapidly assume distinct conformations and simultaneously bind more than one nucleic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1