Tomasz K Wirecki, Grzegorz Lach, Nagendar Goud Badepally, S Naeim Moafinejad, Farhang Jaryani, Gaja Klaudel, Kalina Nec, Eugene F Baulin, Janusz M Bujnicki
{"title":"DesiRNA: structure-based design of RNA sequences with a replica exchange Monte Carlo approach","authors":"Tomasz K Wirecki, Grzegorz Lach, Nagendar Goud Badepally, S Naeim Moafinejad, Farhang Jaryani, Gaja Klaudel, Kalina Nec, Eugene F Baulin, Janusz M Bujnicki","doi":"10.1093/nar/gkae1306","DOIUrl":null,"url":null,"abstract":"Designing RNA sequences that form a specific structure remains a challenge. Current computational methods often struggle with the complexity of RNA structures, especially when considering pseudoknots or restrictions related to RNA function. We developed DesiRNA, a computational tool for the design of RNA sequences based on the Replica Exchange Monte Carlo approach. It finds sequences that minimize a multiobjective scoring function, fulfill user-defined constraints and minimize the violation of restraints. DesiRNA handles pseudoknots, designs RNA–RNA complexes and sequences with alternative structures, prevents oligomerization of monomers, prevents folding into undesired structures and allows users to specify nucleotide composition preferences. In benchmarking tests, DesiRNA with a default simple scoring function solved all 100 puzzles in the Eterna100 benchmark within 24 h, outperforming all existing RNA design programs. With its ability to address complex RNA design challenges, DesiRNA holds promise for a range of applications in RNA research and therapeutic development.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"18 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1306","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing RNA sequences that form a specific structure remains a challenge. Current computational methods often struggle with the complexity of RNA structures, especially when considering pseudoknots or restrictions related to RNA function. We developed DesiRNA, a computational tool for the design of RNA sequences based on the Replica Exchange Monte Carlo approach. It finds sequences that minimize a multiobjective scoring function, fulfill user-defined constraints and minimize the violation of restraints. DesiRNA handles pseudoknots, designs RNA–RNA complexes and sequences with alternative structures, prevents oligomerization of monomers, prevents folding into undesired structures and allows users to specify nucleotide composition preferences. In benchmarking tests, DesiRNA with a default simple scoring function solved all 100 puzzles in the Eterna100 benchmark within 24 h, outperforming all existing RNA design programs. With its ability to address complex RNA design challenges, DesiRNA holds promise for a range of applications in RNA research and therapeutic development.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.