{"title":"TranscriptDB: a transcript-centric database to study eukaryotic transcript conservation and evolution.","authors":"Wend Yam D D Ouedraogo, Aida Ouangraoua","doi":"10.1093/nar/gkae995","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genes can encode multiple distinct transcripts through the alternative splicing (AS) of genes. Interest in the AS mechanism and its evolution across different species has stimulated numerous studies, leading to several databases that provide information on AS and transcriptome data across multiple eukaryotic species. However, existing resources do not offer information on transcript conservation and evolution between genes of multiple species. Similarly to genes, identifying conserved transcripts-those from homologous genes that have retained a similar exon composition-is useful for determining transcript homology relationships, studying transcript functions and reconstructing transcript phylogenies. To address this gap, we have developed TranscriptDB, a database dedicated to studying the conservation and evolution of transcripts within gene families. TranscriptDB offers an extensive catalog of conserved transcripts and phylogenies for 317 annotated eukaryotic species, sourced from Ensembl database version 111. It serves multiple purposes, including the exploration of gene and transcript evolution. Users can access TranscriptDB through various browsing and querying tools, including a user-friendly web interface. The incorporated web servers enable users to retrieve information on transcript evolution using their own data as input. Additionally, a REST application programming interface is available for programmatic data retrieval. A data directory is also available for bulk downloads. TranscriptDB and its resources are freely accessible at https://transcriptdb.cobius.usherbrooke.ca.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae995","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic genes can encode multiple distinct transcripts through the alternative splicing (AS) of genes. Interest in the AS mechanism and its evolution across different species has stimulated numerous studies, leading to several databases that provide information on AS and transcriptome data across multiple eukaryotic species. However, existing resources do not offer information on transcript conservation and evolution between genes of multiple species. Similarly to genes, identifying conserved transcripts-those from homologous genes that have retained a similar exon composition-is useful for determining transcript homology relationships, studying transcript functions and reconstructing transcript phylogenies. To address this gap, we have developed TranscriptDB, a database dedicated to studying the conservation and evolution of transcripts within gene families. TranscriptDB offers an extensive catalog of conserved transcripts and phylogenies for 317 annotated eukaryotic species, sourced from Ensembl database version 111. It serves multiple purposes, including the exploration of gene and transcript evolution. Users can access TranscriptDB through various browsing and querying tools, including a user-friendly web interface. The incorporated web servers enable users to retrieve information on transcript evolution using their own data as input. Additionally, a REST application programming interface is available for programmatic data retrieval. A data directory is also available for bulk downloads. TranscriptDB and its resources are freely accessible at https://transcriptdb.cobius.usherbrooke.ca.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.