Karen L Kanke, Rachael E Rayner, Jack Bozik, Eli Abel, Aparna Venugopalan, Ma Suu, Reza Nouri, Jacob T Stack, Gongbo Guo, Tatyana A Vetter, Estelle Cormet-Boyaka, Mark E Hester, Sriram Vaidyanathan
{"title":"Single-stranded DNA with internal base modifications mediates highly efficient knock-in in primary cells using CRISPR-Cas9","authors":"Karen L Kanke, Rachael E Rayner, Jack Bozik, Eli Abel, Aparna Venugopalan, Ma Suu, Reza Nouri, Jacob T Stack, Gongbo Guo, Tatyana A Vetter, Estelle Cormet-Boyaka, Mark E Hester, Sriram Vaidyanathan","doi":"10.1093/nar/gkae1069","DOIUrl":null,"url":null,"abstract":"Single-stranded DNA (ssDNA) templates along with Cas9 have been used for knocking-in exogenous sequences in the genome but suffer from low efficiency. Here, we show that ssDNA with chemical modifications in 12–19% of internal bases, which we denote as enhanced ssDNA (esDNA), improve knock-in (KI) by 2–3-fold compared to end-modified ssDNA in airway basal stem cells (ABCs), CD34 + hematopoietic cells (CD34 + cells), T-cells and endothelial cells. Over 50% of alleles showed KI in three clinically relevant loci (CFTR, HBB and CCR5) in ABCs using esDNA and up to 70% of alleles showed KI in the HBB locus in CD34 + cells in the presence of a DNA-PKcs inhibitor. This level of correction is therapeutically relevant and is comparable to adeno-associated virus-based templates. The esDNA templates did not improve KI in induced pluripotent stem cells (iPSCs). This may be due to the absence of the nuclease TREX1 in iPSCs. Indeed, knocking out TREX1 in other cells improved KI using unmodified ssDNA. esDNA can be used to modify 20–30 bp regions in primary cells for therapeutic applications and biological modeling. The use of this approach for gene length insertions will require new methods to produce long chemically modified ssDNA in scalable quantities.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"6 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1069","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-stranded DNA (ssDNA) templates along with Cas9 have been used for knocking-in exogenous sequences in the genome but suffer from low efficiency. Here, we show that ssDNA with chemical modifications in 12–19% of internal bases, which we denote as enhanced ssDNA (esDNA), improve knock-in (KI) by 2–3-fold compared to end-modified ssDNA in airway basal stem cells (ABCs), CD34 + hematopoietic cells (CD34 + cells), T-cells and endothelial cells. Over 50% of alleles showed KI in three clinically relevant loci (CFTR, HBB and CCR5) in ABCs using esDNA and up to 70% of alleles showed KI in the HBB locus in CD34 + cells in the presence of a DNA-PKcs inhibitor. This level of correction is therapeutically relevant and is comparable to adeno-associated virus-based templates. The esDNA templates did not improve KI in induced pluripotent stem cells (iPSCs). This may be due to the absence of the nuclease TREX1 in iPSCs. Indeed, knocking out TREX1 in other cells improved KI using unmodified ssDNA. esDNA can be used to modify 20–30 bp regions in primary cells for therapeutic applications and biological modeling. The use of this approach for gene length insertions will require new methods to produce long chemically modified ssDNA in scalable quantities.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.