{"title":"Targeting DDX3X eliminates leukemia stem cells in chronic myeloid leukemia by blocking NT5DC2 mRNA translation.","authors":"Chen Duan, Xiaoying Lin, Waiyi Zou, Qi He, Fen Wei, Jingxuan Pan, Chang Liu, Yanli Jin","doi":"10.1038/s41388-024-03215-w","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model. We found that DDX3X enhanced the survival, serially plating and long-term engraftment abilities of human primary CML CD34<sup>+</sup> cells. Inhibition of DDX3X reduced leukemia burden, eradicated LSCs and extended the survival of CML mice. Mechanistically, we uncovered that DDX3X protein bound to 5'-Nucleotidase Domain Containing 2 (NT5DC2) mRNA and promoted its translation in CML cells. NT5DC2 was a functional mediator in DDX3X regulation of LSCs. Collectively, our findings provide new evidence for RNA helicase facilitating the translation of specific mRNA in LSCs. Targeting DDX3X may represent a promising therapeutic strategy for eradication of LSCs in CML patients.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03215-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model. We found that DDX3X enhanced the survival, serially plating and long-term engraftment abilities of human primary CML CD34+ cells. Inhibition of DDX3X reduced leukemia burden, eradicated LSCs and extended the survival of CML mice. Mechanistically, we uncovered that DDX3X protein bound to 5'-Nucleotidase Domain Containing 2 (NT5DC2) mRNA and promoted its translation in CML cells. NT5DC2 was a functional mediator in DDX3X regulation of LSCs. Collectively, our findings provide new evidence for RNA helicase facilitating the translation of specific mRNA in LSCs. Targeting DDX3X may represent a promising therapeutic strategy for eradication of LSCs in CML patients.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.