Yuqi Zhang, Liang Chu, Zixu Wang, He Tong, Jincheng Hu, Jihao Li
{"title":"A Novel Panorama Depth Estimation Framework for Autonomous Driving Scenarios Based on a Vision Transformer.","authors":"Yuqi Zhang, Liang Chu, Zixu Wang, He Tong, Jincheng Hu, Jihao Li","doi":"10.3390/s24217013","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances from surrounding images in driving scenarios. First, the Patch Filling method is proposed to alleviate the imperfect observation of panoramic depth in autonomous driving scenarios, which constructs a panoramic depth map based on the sparse distance data provided by the 3D point cloud. Then, in order to tackle the distortion challenge faced by outdoor panoramic images, a method for image context learning, ViT-Fuse, is proposed and specifically designed for equirectangular panoramic views. The experimental results show that the proposed ViT-Fuse reduces the estimation error by 9.15% on average in driving scenarios compared with the basic method and exhibits more robust and smoother results on the edge details of the depth estimation maps.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217013","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances from surrounding images in driving scenarios. First, the Patch Filling method is proposed to alleviate the imperfect observation of panoramic depth in autonomous driving scenarios, which constructs a panoramic depth map based on the sparse distance data provided by the 3D point cloud. Then, in order to tackle the distortion challenge faced by outdoor panoramic images, a method for image context learning, ViT-Fuse, is proposed and specifically designed for equirectangular panoramic views. The experimental results show that the proposed ViT-Fuse reduces the estimation error by 9.15% on average in driving scenarios compared with the basic method and exhibits more robust and smoother results on the edge details of the depth estimation maps.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.