Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2024-10-25 DOI:10.1103/PhysRevLett.133.170601
Xiaohan Yang, Ji Chu, Zechen Guo, Wenhui Huang, Yongqi Liang, Jiawei Liu, Jiawei Qiu, Xuandong Sun, Ziyu Tao, Jiawei Zhang, Jiajian Zhang, Libo Zhang, Yuxuan Zhou, Weijie Guo, Ling Hu, Ji Jiang, Yang Liu, Xiayu Linpeng, Tingyong Chen, Yuanzhen Chen, Jingjing Niu, Song Liu, Youpeng Zhong, Dapeng Yu
{"title":"Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits.","authors":"Xiaohan Yang, Ji Chu, Zechen Guo, Wenhui Huang, Yongqi Liang, Jiawei Liu, Jiawei Qiu, Xuandong Sun, Ziyu Tao, Jiawei Zhang, Jiajian Zhang, Libo Zhang, Yuxuan Zhou, Weijie Guo, Ling Hu, Ji Jiang, Yang Liu, Xiayu Linpeng, Tingyong Chen, Yuanzhen Chen, Jingjing Niu, Song Liu, Youpeng Zhong, Dapeng Yu","doi":"10.1103/PhysRevLett.133.170601","DOIUrl":null,"url":null,"abstract":"<p><p>Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into noncomputational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine quantum error correction (QEC) scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 17","pages":"170601"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.170601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into noncomputational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine quantum error correction (QEC) scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超导微ubits 减少耦合器辅助泄漏,实现可扩展量子纠错。
超导量子比特是构建容错量子计算机的一个前景广阔的平台,最近的研究成果表明,随着代码规模的增大,逻辑错误会被抑制。然而,在包括超导电路在内的实际量子系统中,泄漏到非计算态是一个常见问题,会引入相关错误,破坏量子纠错(QEC)的可扩展性。在这里,我们提出并演示了一种利用可调耦合器减少泄漏的方案,可调耦合器是大规模超导量子处理器中广泛采用的一种元件。利用耦合器的强频率可调谐性以及耦合器与读出谐振器之间的杂散相互作用,我们消除了耦合器上的状态泄漏,从而抑制了耦合器之间种群传播引起的空间相关误差。在耦合器的辅助下,我们进一步将泄漏降低到更高的量子比特水平,实现了高效率(98.1%)和低计算子空间错误率(0.58%),从而抑制了 QEC 周期中的时间相关错误。我们方案的性能证明了它作为使用超导量子比特的可扩展 QEC 不可或缺的构建模块的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
Ultrahigh-Energy Particle Collisions and Heavy Dark Matter at Phase Transitions Excitation-Inhibition Balance Controls Information Encoding in Neural Populations Nonequilibrium Transitions in a Template Copying Ensemble Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect Fully Programmable Spatial Photonic Ising Machine by Focal Plane Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1