Building a protective shield: The role of wound healing in reducing postharvest decay and preserving quality of citrus fruit

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-11-05 DOI:10.1016/j.plaphy.2024.109272
Xiaoquan Gao , Wenjun Wang , Ou Chen , Jian Huang , Kaifang Zeng
{"title":"Building a protective shield: The role of wound healing in reducing postharvest decay and preserving quality of citrus fruit","authors":"Xiaoquan Gao ,&nbsp;Wenjun Wang ,&nbsp;Ou Chen ,&nbsp;Jian Huang ,&nbsp;Kaifang Zeng","doi":"10.1016/j.plaphy.2024.109272","DOIUrl":null,"url":null,"abstract":"<div><div>Postharvest citrus fruit is susceptible to pathogenic infestation and quality reduction through wounds, leading to tremendous commercial losses. Herein, wound healing of citrus fruit was obviously at 25 °C for five days to form a barrier effective against the development of infectious diseases and water dissipation. Combined with the results of transcriptional and metabolic levels, wound healing activated the expression of <em>CsKCS4</em>, <em>CsKCS11</em>, <em>CsCYP704B1</em>, <em>CsFAH1</em>, <em>CsGPAT3</em> and <em>CsGPAT9</em> genes in suberin biosynthesis pathway, and <em>CsPMEI7</em>, <em>CsCesA-D3</em>, <em>CsXTH2</em>, <em>CsXTH6</em>, <em>CsXTH22</em>, <em>CsXTH23</em>, <em>CsXTH24</em>, <em>CsC4H</em> and <em>CsCAD</em> genes in cell wall metabolism pathway, leading to the accumulation of suberin monomers and cell wall components. The results of microscopic observations proved wound healing promoted suberin deposition and cell wall strengthening. Meanwhile, wound healing required the provision of energy and precursor substances by carbohydrate metabolism and amino acid metabolism. We provide new insights into the regulatory mechanism of wound healing on improving disease resistance and maintaining the quality of citrus fruit.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109272"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009409","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Postharvest citrus fruit is susceptible to pathogenic infestation and quality reduction through wounds, leading to tremendous commercial losses. Herein, wound healing of citrus fruit was obviously at 25 °C for five days to form a barrier effective against the development of infectious diseases and water dissipation. Combined with the results of transcriptional and metabolic levels, wound healing activated the expression of CsKCS4, CsKCS11, CsCYP704B1, CsFAH1, CsGPAT3 and CsGPAT9 genes in suberin biosynthesis pathway, and CsPMEI7, CsCesA-D3, CsXTH2, CsXTH6, CsXTH22, CsXTH23, CsXTH24, CsC4H and CsCAD genes in cell wall metabolism pathway, leading to the accumulation of suberin monomers and cell wall components. The results of microscopic observations proved wound healing promoted suberin deposition and cell wall strengthening. Meanwhile, wound healing required the provision of energy and precursor substances by carbohydrate metabolism and amino acid metabolism. We provide new insights into the regulatory mechanism of wound healing on improving disease resistance and maintaining the quality of citrus fruit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立保护罩:伤口愈合在减少柑橘类水果采后腐烂和保持品质方面的作用。
柑橘类水果采后很容易受到病原体侵染,并通过伤口降低品质,从而导致巨大的商业损失。在本文中,柑橘果实的伤口愈合明显是在 25 °C、持续五天的条件下进行的,以形成一道有效的屏障,防止柑橘果实感染病害和水分散失。结合转录和代谢水平的研究结果,伤口愈合激活了果胶生物合成途径中 CsKCS4、CsKCS11、CsCYP704B1、CsFAH1、CsGPAT3 和 CsGPAT9 基因的表达、以及细胞壁代谢途径中的 CsPMEI7、CsCesA-D3、CsXTH2、CsXTH6、CsXTH22、CsXTH23、CsXTH24、CsC4H 和 CsCAD 基因,从而导致了单体小檗素和细胞壁成分的积累。显微镜观察结果证明,伤口愈合促进了单胶的沉积和细胞壁的强化。同时,伤口愈合需要碳水化合物代谢和氨基酸代谢提供能量和前体物质。我们对伤口愈合对提高柑橘抗病性和保持果实品质的调控机制有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Functional characterization of Camptotheca acuminata 7-deoxyloganetic acid synthases and 7-deoxyloganetic acid glucosyltransferases involved in camptothecin biosynthesis. Developing fluorescence hyperspectral imaging methods for non-invasive detection of herbicide safeners action mechanism and effectiveness. Effect of elevated ammonium on biotic and abiotic stress defense responses and expression of related genes in cucumber (Cucumis sativus L.) plants. Genome-wide identification of SWEET gene family and the sugar transport function of three candidate genes during female flower bud induction stage of Juglans sigillata Dode. ZnO nanoparticles enhances cadmium tolerance by modulating N6-methyladenosine (m6A) level of stress-responsive genes NRT1 and GM35E in vegetable soybean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1