Optimizing Open Radio Access Network Systems with LLAMA V2 for Enhanced Mobile Broadband, Ultra-Reliable Low-Latency Communications, and Massive Machine-Type Communications: A Framework for Efficient Network Slicing and Real-Time Resource Allocation.
H Ahmed Tahir, Walaa Alayed, Waqar Ul Hassan, Thuan Dinh Do
{"title":"Optimizing Open Radio Access Network Systems with LLAMA V2 for Enhanced Mobile Broadband, Ultra-Reliable Low-Latency Communications, and Massive Machine-Type Communications: A Framework for Efficient Network Slicing and Real-Time Resource Allocation.","authors":"H Ahmed Tahir, Walaa Alayed, Waqar Ul Hassan, Thuan Dinh Do","doi":"10.3390/s24217009","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an advanced framework integrating LLAMA_V2, a large language model, into Open Radio Access Network (O-RAN) systems. The focus is on efficient network slicing for various services. Sensors in IoT devices generate continuous data streams, enabling resource allocation through O-RAN's dynamic slicing and LLAMA_V2's optimization. LLAMA_V2 was selected for its superior ability to capture complex network dynamics, surpassing traditional AI/ML models. The proposed method combines sophisticated mathematical models with optimization and interfacing techniques to address challenges in resource allocation and slicing. LLAMA_V2 enhances decision making by offering explanations for policy decisions within the O-RAN framework and forecasting future network conditions using a lightweight LSTM model. It outperforms baseline models in key metrics such as latency reduction, throughput improvement, and packet loss mitigation, making it a significant solution for 5G network applications in advanced industries.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217009","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an advanced framework integrating LLAMA_V2, a large language model, into Open Radio Access Network (O-RAN) systems. The focus is on efficient network slicing for various services. Sensors in IoT devices generate continuous data streams, enabling resource allocation through O-RAN's dynamic slicing and LLAMA_V2's optimization. LLAMA_V2 was selected for its superior ability to capture complex network dynamics, surpassing traditional AI/ML models. The proposed method combines sophisticated mathematical models with optimization and interfacing techniques to address challenges in resource allocation and slicing. LLAMA_V2 enhances decision making by offering explanations for policy decisions within the O-RAN framework and forecasting future network conditions using a lightweight LSTM model. It outperforms baseline models in key metrics such as latency reduction, throughput improvement, and packet loss mitigation, making it a significant solution for 5G network applications in advanced industries.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.