{"title":"Reinforcement of Epoxidized Natural Rubber with High Antimicrobial Resistance Using Water Hyacinth Fibers and Chlorhexidine Gluconate.","authors":"Thidarat Kanthiya, Pornchai Rachtanapun, Siwarote Boonrasri, Thorsak Kittikorn, Thanongsak Chaiyaso, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Sarinthip Thanakkasaranee, Noppol Leksawasdi, Yuthana Phimolsiripol, Warintorn Ruksiriwanich, Kittisak Jantanasakulwong","doi":"10.3390/polym16213089","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, epoxidized natural rubber (ENR) was mixed using a two-roller mixer. Water hyacinth fiber (WHF) acted as a reinforcing agent in the preparation of the rubber composite at 10 phr (ENRC/WHF). Chlorhexidine gluconate (CHG) was added at different concentrations (1, 5, 10, and 20 phr) as an antimicrobial and coupling agent. The tensile strength increased with a CHG content of 1 phr (4.59 MPa). The ENRC/WHF/CHG20 blend offered high hardness (38) and good morphology owing to the reduction in cavities and fiber pull-out from the rubber matrix. The swelling of the sample blends in oil and toluene decreased as the CHG content increased. Reactions of -NH<sub>2</sub>/epoxy groups and -NH<sub>2</sub>/-OH groups occurred during the preparation of the ENRC/WHF/CHG blend. The FTIR spectroscopy peak at 1730 cm<sup>-1</sup> confirmed the reaction between the -NH<sub>2</sub> groups of CHG and epoxy groups of ENR. The ENRC/WHF/CHG blend at 10 phr and 20 phr exhibited zones of inhibition against three bacterial species (<i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Bacillus cereus</i>). CHG simultaneously acted as a crosslinking agent between ENR and WHF and as an antimicrobial additive for the blends. CHG also improved the tensile strength, hardness, swelling, and antimicrobial properties of ENR composites.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213089","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, epoxidized natural rubber (ENR) was mixed using a two-roller mixer. Water hyacinth fiber (WHF) acted as a reinforcing agent in the preparation of the rubber composite at 10 phr (ENRC/WHF). Chlorhexidine gluconate (CHG) was added at different concentrations (1, 5, 10, and 20 phr) as an antimicrobial and coupling agent. The tensile strength increased with a CHG content of 1 phr (4.59 MPa). The ENRC/WHF/CHG20 blend offered high hardness (38) and good morphology owing to the reduction in cavities and fiber pull-out from the rubber matrix. The swelling of the sample blends in oil and toluene decreased as the CHG content increased. Reactions of -NH2/epoxy groups and -NH2/-OH groups occurred during the preparation of the ENRC/WHF/CHG blend. The FTIR spectroscopy peak at 1730 cm-1 confirmed the reaction between the -NH2 groups of CHG and epoxy groups of ENR. The ENRC/WHF/CHG blend at 10 phr and 20 phr exhibited zones of inhibition against three bacterial species (Staphylococcus aureus, Escherichia coli, and Bacillus cereus). CHG simultaneously acted as a crosslinking agent between ENR and WHF and as an antimicrobial additive for the blends. CHG also improved the tensile strength, hardness, swelling, and antimicrobial properties of ENR composites.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.