Creation of Composite Aerogels Consisting of Activated Carbon and Nanocellulose Blended with Cross-Linked Biopolymers: Application as Ethylene Scavengers.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-31 DOI:10.3390/polym16213081
Asadullah, Kittaporn Ngiwngam, Jaejoon Han, Pornchai Rachtanapun, Rafael Auras, Thomas Karbowiak, Duangjai Noiwan, Masubon Thongngam, Wirongrong Tongdeesoontorn
{"title":"Creation of Composite Aerogels Consisting of Activated Carbon and Nanocellulose Blended with Cross-Linked Biopolymers: Application as Ethylene Scavengers.","authors":"Asadullah, Kittaporn Ngiwngam, Jaejoon Han, Pornchai Rachtanapun, Rafael Auras, Thomas Karbowiak, Duangjai Noiwan, Masubon Thongngam, Wirongrong Tongdeesoontorn","doi":"10.3390/polym16213081","DOIUrl":null,"url":null,"abstract":"<p><p>This study involved producing aerogels using activated carbon (AC) and nanocellulose (NC). Two distinct structured composites, AC composite aerogel (ACCA) and NC composite aerogel (NCCA), were developed by separately mixing AC and NC with identical proportions of cross-linked biopolymers: hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), and chitosan (C). These aerogels were evaluated for their capability to adsorb ethylene gas through batch experiments, while the physical and chemical characteristics were thoroughly examined to determine their feasibility of removing ethylene. The resulting ACCA and NCCA aerogels exhibited low densities of 0.094 g cm<sup>-3</sup> and 0.077 g cm<sup>-3</sup>, respectively, coupled with high porosity ranging between 95 and 96%. During the ethylene adsorption test, NCCA exhibited superior ethylene removal rates (~14.88-16.77 mL kg<sup>-1</sup>) compared to ACCA (~13.57-14.97 mL kg<sup>-1</sup>). Specifically, NCCA achieved a removal efficiency of 83.86% compared to 74.64% for ACCA. Kinetic model fitting yielded high R<sup>2</sup> values ranging from 0.97 to 0.98 with the Lagergren kinetic model. These findings suggest the potential of composite aerogels to be incorporated into food packaging materials for dynamic ethylene capture, independent of environmental conditions, thereby providing promising routes for further development.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study involved producing aerogels using activated carbon (AC) and nanocellulose (NC). Two distinct structured composites, AC composite aerogel (ACCA) and NC composite aerogel (NCCA), were developed by separately mixing AC and NC with identical proportions of cross-linked biopolymers: hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), and chitosan (C). These aerogels were evaluated for their capability to adsorb ethylene gas through batch experiments, while the physical and chemical characteristics were thoroughly examined to determine their feasibility of removing ethylene. The resulting ACCA and NCCA aerogels exhibited low densities of 0.094 g cm-3 and 0.077 g cm-3, respectively, coupled with high porosity ranging between 95 and 96%. During the ethylene adsorption test, NCCA exhibited superior ethylene removal rates (~14.88-16.77 mL kg-1) compared to ACCA (~13.57-14.97 mL kg-1). Specifically, NCCA achieved a removal efficiency of 83.86% compared to 74.64% for ACCA. Kinetic model fitting yielded high R2 values ranging from 0.97 to 0.98 with the Lagergren kinetic model. These findings suggest the potential of composite aerogels to be incorporated into food packaging materials for dynamic ethylene capture, independent of environmental conditions, thereby providing promising routes for further development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创建由活性碳和纳米纤维素与交联生物聚合物混合而成的复合气凝胶:作为乙烯清除剂的应用。
这项研究涉及使用活性炭(AC)和纳米纤维素(NC)生产气凝胶。通过将活性炭和纳米纤维素分别与相同比例的交联生物聚合物(羟丙基甲基纤维素(HPMC)、甲基纤维素(MC)和壳聚糖(C))混合,制备了两种不同结构的复合材料,即活性炭复合气凝胶(ACCA)和纳米纤维素复合气凝胶(NCCA)。通过批量实验对这些气凝胶吸附乙烯气体的能力进行了评估,同时对其物理和化学特性进行了全面检查,以确定其去除乙烯的可行性。结果表明,ACCA 和 NCCA 气凝胶的密度分别为 0.094 g cm-3 和 0.077 g cm-3,而且孔隙率在 95% 和 96% 之间。在乙烯吸附测试中,NCCA 的乙烯去除率(约 14.88-16.77 mL kg-1)优于 ACCA(约 13.57-14.97 mL kg-1)。具体而言,NCCA 的去除率为 83.86%,而 ACCA 为 74.64%。采用 Lagergren 动力学模型进行动力学模型拟合,得到了 0.97 至 0.98 的高 R2 值。这些研究结果表明,复合气凝胶具有在食品包装材料中进行动态乙烯捕获的潜力,不受环境条件的影响,从而为进一步开发提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery. Coassembly of a Hybrid Synthetic-Biological Chitosan-g-Poly(N-isopropylacrylamide) Copolymer with DNAs of Different Lengths. Correction: El-Hefnawy et al. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers 2022, 14, 318. A Comprehensive Review on the Incremental Sheet Forming of Polycarbonate. Effect of Fiber Cross-Sectional and Surface Properties on the Degradation of Biobased Polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1