{"title":"Exploring new useful phosphors by combining experiments with machine learning.","authors":"Takashi Takeda, Yukinori Koyama, Hidekazu Ikeno, Satoru Matsuishi, Naoto Hirosaki","doi":"10.1080/14686996.2024.2421761","DOIUrl":null,"url":null,"abstract":"<p><p>New phosphors are consistently in demand for advances in solid-state lighting and displays. Conventional trial-and-error exploration experiments for new phosphors require considerable time. If a phosphor host suitable for the target luminescent property can be proposed using computational science, the speed of development of new phosphors will significantly increase, and unexpected/overlooked compositions could be proposed as candidates. As a more practical approach for developing new phosphors with target luminescent properties, we looked at combining experiments with machine learning on the topics of emission wavelength, full width at half maximum (FWHM) of the emission peak, temperature dependence of the emission spectrum (thermal quenching), new phosphors with new chemical composition or crystal structure, and high-throughput experiments.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2421761"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2421761","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
New phosphors are consistently in demand for advances in solid-state lighting and displays. Conventional trial-and-error exploration experiments for new phosphors require considerable time. If a phosphor host suitable for the target luminescent property can be proposed using computational science, the speed of development of new phosphors will significantly increase, and unexpected/overlooked compositions could be proposed as candidates. As a more practical approach for developing new phosphors with target luminescent properties, we looked at combining experiments with machine learning on the topics of emission wavelength, full width at half maximum (FWHM) of the emission peak, temperature dependence of the emission spectrum (thermal quenching), new phosphors with new chemical composition or crystal structure, and high-throughput experiments.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.