Yifan Chen, Sunantha Kosonsiriluk, Lillian X Ehresmann, Kent M Reed, Sally L Noll, Ben W Wileman, Marissa M Studniski, Kahina S Boukherroub
{"title":"Artificial insemination and laying cycle influence adaptive immune cell numbers and localization in the reproductive tract of turkey breeder hens.","authors":"Yifan Chen, Sunantha Kosonsiriluk, Lillian X Ehresmann, Kent M Reed, Sally L Noll, Ben W Wileman, Marissa M Studniski, Kahina S Boukherroub","doi":"10.1016/j.psj.2024.104448","DOIUrl":null,"url":null,"abstract":"<p><p>Weekly artificial insemination (AI) is a common practice on commercial turkey breeder farms. The aim of this study was to determine changes in stress as well as oviduct and systemic immunity in response to weekly artificial inseminations through the laying cycle of turkey hens. Hens were divided into sham (extender only) and semen (extender + sperm) treatments. Blood, uterovaginal junction (UVJ), vagina, and spleen were collected at start of lay, peak lay, and end of lay (n = 8-12 /group for blood and 5 for tissues). The heterophil to lymphocyte ratio (H:L) was significantly higher in the semen-inseminated hens compared with the sham-inseminated hens at peak lay (n = 0.05). Immunohistochemistry revealed a higher number of CD3+ T cells in sperm storage tubules (SSTs) and UVJ submucosa at the end of lay compared with start and peak of lay across insemination treatments (n = 0.07 and 0.01, respectively). Within the end-of-lay group, semen-inseminated hens showed a higher number of CD3+ T cells in SSTs and UVJ submucosa (n = 0.04 and 0.1, respectively). The number of IgM+ B cells was significantly higher at start of lay compared with end of lay in SSTs and spleen (n = 0.01 and 0.0001, respectively) regardless of insemination treatment. In the vaginal submucosa, the number of IgM+ B cells was significantly higher in the semen group compared with the sham group at peak lay (n = 0.04). The number of IgA+ and IgY+ B cells were higher in the UVJ submucosa at the end of lay compared with start of lay, regardless of insemination treatment (n = 0.0001 and 0.03 respectively). In summary, the localization and number of adaptive immune cells change in response to the presence of sperm and laying cycle and depend on factors including immune cell type and tissue compartment. This suggests that the adaptive immune system of the oviduct plays an important role in responding to sperm based on the stage of the laying cycle. Modulating this immune response could improve reproductive performance.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"104448"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104448","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Weekly artificial insemination (AI) is a common practice on commercial turkey breeder farms. The aim of this study was to determine changes in stress as well as oviduct and systemic immunity in response to weekly artificial inseminations through the laying cycle of turkey hens. Hens were divided into sham (extender only) and semen (extender + sperm) treatments. Blood, uterovaginal junction (UVJ), vagina, and spleen were collected at start of lay, peak lay, and end of lay (n = 8-12 /group for blood and 5 for tissues). The heterophil to lymphocyte ratio (H:L) was significantly higher in the semen-inseminated hens compared with the sham-inseminated hens at peak lay (n = 0.05). Immunohistochemistry revealed a higher number of CD3+ T cells in sperm storage tubules (SSTs) and UVJ submucosa at the end of lay compared with start and peak of lay across insemination treatments (n = 0.07 and 0.01, respectively). Within the end-of-lay group, semen-inseminated hens showed a higher number of CD3+ T cells in SSTs and UVJ submucosa (n = 0.04 and 0.1, respectively). The number of IgM+ B cells was significantly higher at start of lay compared with end of lay in SSTs and spleen (n = 0.01 and 0.0001, respectively) regardless of insemination treatment. In the vaginal submucosa, the number of IgM+ B cells was significantly higher in the semen group compared with the sham group at peak lay (n = 0.04). The number of IgA+ and IgY+ B cells were higher in the UVJ submucosa at the end of lay compared with start of lay, regardless of insemination treatment (n = 0.0001 and 0.03 respectively). In summary, the localization and number of adaptive immune cells change in response to the presence of sperm and laying cycle and depend on factors including immune cell type and tissue compartment. This suggests that the adaptive immune system of the oviduct plays an important role in responding to sperm based on the stage of the laying cycle. Modulating this immune response could improve reproductive performance.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.