Data-driven optimization of the in silico design of ionic liquids as interfacial cell culture fluids.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.1080/14686996.2024.2418287
Jun Nakanishi, Takeshi Ueki, Sae Dieb, Hidenori Noguchi, Shota Yamamoto, Keitaro Sodeyama
{"title":"Data-driven optimization of the <i>in silico</i> design of ionic liquids as interfacial cell culture fluids.","authors":"Jun Nakanishi, Takeshi Ueki, Sae Dieb, Hidenori Noguchi, Shota Yamamoto, Keitaro Sodeyama","doi":"10.1080/14686996.2024.2418287","DOIUrl":null,"url":null,"abstract":"<p><p>As an alternative to conventional plastic dishes, the interface between water-immiscible hydrophobic fluids, such as perfluorocarbons and silicones, permits cell adhesion and growth. Thus, it is expected to replace the petroleum-derived products in a sustainable society. However, most hydrophobic fluids are cytotoxic, which limits the range of mechanical and chemical cues exposed to the cells. Using a data-driven approach, this study aimed to identify non-cytotoxic ionic liquids (ILs) as fluid culture platforms to take advantage of their 'designer' nature for broadening the possible physicochemical ranges exposed to cells and their repeated use owing to their high heat stability before their biological applications. The new candidates within the readily synthesized ammonium-type ILs were identified through the active cycle of regression and a limited number of cytotoxicity tests. Structure - cytotoxicity analysis indicated that the presence of multiple long alkyl branches was critical for low cytotoxicity. Particularly, we successfully cultured human mesenchymal stem cells (hMSCs) at the trihexylethylammonium trifluoromethylsulfonylimide interface and repeated their use after solvent extraction and heat sterilization. This study identified non-cytotoxic ILs that fulfill plastics' <b>3 R</b> (<b>R</b>educe, <b>R</b>ecycle, and <b>R</b>eplace) requirements and opens new avenues for hMSC fate manipulation through mechanotransduction.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2418287"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2418287","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As an alternative to conventional plastic dishes, the interface between water-immiscible hydrophobic fluids, such as perfluorocarbons and silicones, permits cell adhesion and growth. Thus, it is expected to replace the petroleum-derived products in a sustainable society. However, most hydrophobic fluids are cytotoxic, which limits the range of mechanical and chemical cues exposed to the cells. Using a data-driven approach, this study aimed to identify non-cytotoxic ionic liquids (ILs) as fluid culture platforms to take advantage of their 'designer' nature for broadening the possible physicochemical ranges exposed to cells and their repeated use owing to their high heat stability before their biological applications. The new candidates within the readily synthesized ammonium-type ILs were identified through the active cycle of regression and a limited number of cytotoxicity tests. Structure - cytotoxicity analysis indicated that the presence of multiple long alkyl branches was critical for low cytotoxicity. Particularly, we successfully cultured human mesenchymal stem cells (hMSCs) at the trihexylethylammonium trifluoromethylsulfonylimide interface and repeated their use after solvent extraction and heat sterilization. This study identified non-cytotoxic ILs that fulfill plastics' 3 R (Reduce, Recycle, and Replace) requirements and opens new avenues for hMSC fate manipulation through mechanotransduction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以数据为驱动,优化作为界面细胞培养液的离子液体的硅设计。
作为传统塑料盘的替代品,全氟碳化物和硅酮等不溶于水的疏水性流体之间的界面允许细胞粘附和生长。因此,在可持续发展的社会中,它有望取代石油衍生产品。然而,大多数疏水性液体都具有细胞毒性,这限制了细胞接触机械和化学线索的范围。本研究采用数据驱动方法,旨在确定无细胞毒性离子液体(ILs)作为流体培养平台,以利用其 "设计者 "性质,拓宽细胞可能接触到的物理化学范围,并在生物应用之前,因其热稳定性高而重复使用。通过回归活性循环和数量有限的细胞毒性测试,确定了易于合成的铵型 ILs 中的新候选物质。结构-细胞毒性分析表明,多个长烷基分支的存在是低细胞毒性的关键。特别是,我们成功地在三己基乙基三氟甲基磺酰亚胺铵界面上培养了人类间充质干细胞(hMSCs),并在溶剂萃取和加热灭菌后重复使用。这项研究确定了可满足塑料 3 R(减少、回收和替代)要求的无细胞毒性 IL,并为通过机械传导操纵 hMSC 的命运开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena A comprehensive data network for data-driven study of battery materials Lightweight acoustic hyperbolic paraboloid diaphragms with graphene through self-assembly nanoarchitectonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1