{"title":"Fast and Smart State Characterization of Large-Format Lithium-Ion Batteries via Phased-Array Ultrasonic Sensing Technology.","authors":"Zihan Zhou, Wen Hua, Simin Peng, Yong Tian, Jindong Tian, Xiaoyu Li","doi":"10.3390/s24217061","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-ion batteries (LIBs) are widely used in electric vehicles and energy storage systems, making accurate state transition monitoring a key research topic. This paper presents a characterization method for large-format LIBs based on phased-array ultrasonic technology (PAUT). A finite element model of a large-format aluminum shell lithium-ion battery is developed on the basis of ultrasonic wave propagation in multilayer porous media. Simulations and comparative analyses of phased array ultrasonic imaging are conducted for various operating conditions and abnormal gas generation. A 40 Ah ternary lithium battery (NCMB) is tested at a 0.5C charge-discharge rate, with the state of charge (SOC) and ultrasonic data extracted. The relationship between ultrasonic signals and phased array images is established through simulation and experimental comparisons. To estimate the SOC, a fully connected neural network (FCNN) model is designed and trained, achieving an error of less than 4%. Additionally, phased array imaging, which is conducted every 5 s during overcharging and overdischarging, reveals that gas bubbles form at 0.9 V and increase significantly at 0.2 V. This research provides a new method for battery state characterization.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217061","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries (LIBs) are widely used in electric vehicles and energy storage systems, making accurate state transition monitoring a key research topic. This paper presents a characterization method for large-format LIBs based on phased-array ultrasonic technology (PAUT). A finite element model of a large-format aluminum shell lithium-ion battery is developed on the basis of ultrasonic wave propagation in multilayer porous media. Simulations and comparative analyses of phased array ultrasonic imaging are conducted for various operating conditions and abnormal gas generation. A 40 Ah ternary lithium battery (NCMB) is tested at a 0.5C charge-discharge rate, with the state of charge (SOC) and ultrasonic data extracted. The relationship between ultrasonic signals and phased array images is established through simulation and experimental comparisons. To estimate the SOC, a fully connected neural network (FCNN) model is designed and trained, achieving an error of less than 4%. Additionally, phased array imaging, which is conducted every 5 s during overcharging and overdischarging, reveals that gas bubbles form at 0.9 V and increase significantly at 0.2 V. This research provides a new method for battery state characterization.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.