Comprehensive Review: High-Performance Positioning Systems for Navigation and Wayfinding for Visually Impaired People.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217020
Jean Marc Feghali, Cheng Feng, Arnab Majumdar, Washington Yotto Ochieng
{"title":"Comprehensive Review: High-Performance Positioning Systems for Navigation and Wayfinding for Visually Impaired People.","authors":"Jean Marc Feghali, Cheng Feng, Arnab Majumdar, Washington Yotto Ochieng","doi":"10.3390/s24217020","DOIUrl":null,"url":null,"abstract":"<p><p>The global increase in the population of Visually Impaired People (VIPs) underscores the rapidly growing demand for a robust navigation system to provide safe navigation in diverse environments. State-of-the-art VIP navigation systems cannot achieve the required performance (accuracy, integrity, availability, and integrity) because of insufficient positioning capabilities and unreliable investigations of transition areas and complex environments (indoor, outdoor, and urban). The primary reason for these challenges lies in the segregation of Visual Impairment (VI) research within medical and engineering disciplines, impeding technology developers' access to comprehensive user requirements. To bridge this gap, this paper conducts a comprehensive review covering global classifications of VI, international and regional standards for VIP navigation, fundamental VIP requirements, experimentation on VIP behavior, an evaluation of state-of-the-art positioning systems for VIP navigation and wayfinding, and ways to overcome difficulties during exceptional times such as COVID-19. This review identifies current research gaps, offering insights into areas requiring advancements. Future work and recommendations are presented to enhance VIP mobility, enable daily activities, and promote societal integration. This paper addresses the urgent need for high-performance navigation systems for the growing population of VIPs, highlighting the limitations of current technologies in complex environments. Through a comprehensive review of VI classifications, VIPs' navigation standards, user requirements, and positioning systems, this paper identifies research gaps and offers recommendations to improve VIP mobility and societal integration.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217020","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The global increase in the population of Visually Impaired People (VIPs) underscores the rapidly growing demand for a robust navigation system to provide safe navigation in diverse environments. State-of-the-art VIP navigation systems cannot achieve the required performance (accuracy, integrity, availability, and integrity) because of insufficient positioning capabilities and unreliable investigations of transition areas and complex environments (indoor, outdoor, and urban). The primary reason for these challenges lies in the segregation of Visual Impairment (VI) research within medical and engineering disciplines, impeding technology developers' access to comprehensive user requirements. To bridge this gap, this paper conducts a comprehensive review covering global classifications of VI, international and regional standards for VIP navigation, fundamental VIP requirements, experimentation on VIP behavior, an evaluation of state-of-the-art positioning systems for VIP navigation and wayfinding, and ways to overcome difficulties during exceptional times such as COVID-19. This review identifies current research gaps, offering insights into areas requiring advancements. Future work and recommendations are presented to enhance VIP mobility, enable daily activities, and promote societal integration. This paper addresses the urgent need for high-performance navigation systems for the growing population of VIPs, highlighting the limitations of current technologies in complex environments. Through a comprehensive review of VI classifications, VIPs' navigation standards, user requirements, and positioning systems, this paper identifies research gaps and offers recommendations to improve VIP mobility and societal integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合评论:用于视障人士导航和寻路的高性能定位系统。
随着全球视障人士(VIP)数量的增加,人们对在不同环境中提供安全导航的强大导航系统的需求也在迅速增长。由于定位能力不足以及对过渡区域和复杂环境(室内、室外和城市)的调查不可靠,最先进的视障人士导航系统无法实现所需的性能(准确性、完整性、可用性和完整性)。造成这些挑战的主要原因在于视力障碍(VI)研究在医学和工程学科中的隔离,阻碍了技术开发人员获得全面的用户需求。为了弥补这一差距,本文进行了全面的综述,内容涵盖全球视障分类、国际和地区贵宾导航标准、贵宾基本要求、贵宾行为实验、用于贵宾导航和寻路的最新定位系统评估,以及在 COVID-19 等特殊时期克服困难的方法。本综述确定了当前的研究差距,为需要进步的领域提供了见解。本文还介绍了未来的工作和建议,以提高贵宾的移动性,实现日常活动,促进社会融合。本文探讨了日益增长的要人对高性能导航系统的迫切需求,强调了当前技术在复杂环境中的局限性。通过对贵宾通道分类、贵宾导航标准、用户需求和定位系统的全面回顾,本文确定了研究差距,并提出了改善贵宾移动性和社会融合的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. A Study of the Effect of Temperature on the Capacitance Characteristics of a Metal-μhemisphere Resonant Gyroscope. Evaluating Alternative Registration Planes in Imageless, Computer-Assisted Navigation Systems for Direct Anterior Total Hip Arthroplasty. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1