Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217039
Yingtao Qi, Shu Gan, Xiping Yuan, Lin Hu, Jiankai Hu, Hailong Zhao, Chengzhuo Lu
{"title":"Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China.","authors":"Yingtao Qi, Shu Gan, Xiping Yuan, Lin Hu, Jiankai Hu, Hailong Zhao, Chengzhuo Lu","doi":"10.3390/s24217039","DOIUrl":null,"url":null,"abstract":"<p><p>This study used hyperspectral remote sensing to rapidly, economically, and non-destructively determine the soil iron oxide content of the Dinosaur Valley annular tectonic region of Lufeng, Yunnan Province. The laboratory determined the iron oxide content and original spectral reflectance (OR) in 138 surface soil samples. We first subjected the OR data to Savizky-Golay smoothing, followed by four spectral transformations-continuum removal reflectance, reciprocal logarithm reflectance, standard normal variate reflectance, and first-order differential reflectance-which improved the signal-to-noise ratio of the spectral curves and highlighted the spectral features. Then, we combined the correlation coefficient method (CC), competitive adaptive reweighting algorithm, and Boruta algorithm to screen out the characteristic wavelength. From this, we constructed the linear partial least squares regression model, nonlinear random forest, and XGBoost machine learning algorithms. The results show that the CC-Boruta method can effectively remove any noise and irrelevant information to improve the model's accuracy and stability. The XGBoost nonlinear machine learning algorithm model better captures the complex nonlinear relationship between the spectra and iron oxide content, thus improving its accuracy. This provides a relevant reference for the rapid and accurate inversion of iron oxide content in soil using hyperspectral data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217039","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study used hyperspectral remote sensing to rapidly, economically, and non-destructively determine the soil iron oxide content of the Dinosaur Valley annular tectonic region of Lufeng, Yunnan Province. The laboratory determined the iron oxide content and original spectral reflectance (OR) in 138 surface soil samples. We first subjected the OR data to Savizky-Golay smoothing, followed by four spectral transformations-continuum removal reflectance, reciprocal logarithm reflectance, standard normal variate reflectance, and first-order differential reflectance-which improved the signal-to-noise ratio of the spectral curves and highlighted the spectral features. Then, we combined the correlation coefficient method (CC), competitive adaptive reweighting algorithm, and Boruta algorithm to screen out the characteristic wavelength. From this, we constructed the linear partial least squares regression model, nonlinear random forest, and XGBoost machine learning algorithms. The results show that the CC-Boruta method can effectively remove any noise and irrelevant information to improve the model's accuracy and stability. The XGBoost nonlinear machine learning algorithm model better captures the complex nonlinear relationship between the spectra and iron oxide content, thus improving its accuracy. This provides a relevant reference for the rapid and accurate inversion of iron oxide content in soil using hyperspectral data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国云南禄丰环状构造区土壤氧化铁含量的高光谱遥感与机器学习算法定量反演研究
本研究利用高光谱遥感技术,快速、经济、无损地测定了云南省禄丰县恐龙谷环状构造区的土壤氧化铁含量。实验室测定了 138 个地表土壤样本中的氧化铁含量和原始光谱反射率(OR)。我们首先对原始光谱反射率数据进行了萨维兹基-戈莱平滑处理,然后进行了四次光谱变换--连续去除反射率、倒数对数反射率、标准正态变分反射率和一阶微分反射率,从而提高了光谱曲线的信噪比,突出了光谱特征。然后,我们结合相关系数法(CC)、竞争性自适应加权算法和 Boruta 算法筛选出特征波长。在此基础上,我们构建了线性偏最小二乘回归模型、非线性随机森林和 XGBoost 机器学习算法。结果表明,CC-Boruta 方法能有效去除任何噪声和无关信息,从而提高模型的准确性和稳定性。XGBoost 非线性机器学习算法模型能更好地捕捉光谱与氧化铁含量之间复杂的非线性关系,从而提高其准确性。这为利用高光谱数据快速准确地反演土壤中的氧化铁含量提供了相关参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. A Study of the Effect of Temperature on the Capacitance Characteristics of a Metal-μhemisphere Resonant Gyroscope. Evaluating Alternative Registration Planes in Imageless, Computer-Assisted Navigation Systems for Direct Anterior Total Hip Arthroplasty. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1