{"title":"Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate.","authors":"Xianfeng Wang, Hui Liu, Guoxiong Liu, Dan Xu","doi":"10.3390/s24217096","DOIUrl":null,"url":null,"abstract":"<p><p>Working stress is an important indicator reflecting the health status of structures. Passive-monitoring technology using the piezoelectric effect can effectively monitor the dynamic stress of structures. However, under static loads, the charge generated by the piezoelectric devices can only be preserved when the external circuit impedance is infinitely large, which means passive-monitoring techniques are unable to monitor static and quasi-static stress caused by slow-changing actions. In current studies, experimental observations have shown that the impedance characteristics of piezoelectric devices are affected by external static loads, yet the underlying mechanisms remain inadequately explained. This is because the impedance characteristics of piezoelectric devices are actually dynamic characteristics under alternating voltage. Most existing impedance analysis models are based on linear elastic dynamics. Within this framework, the impact of static stress on dynamic characteristics, including impedance characteristics, cannot be addressed. Accounting for static stress in impedance modeling is a challenging problem. In this study, the static stress applied on an embedded piezoelectric plate is abstracted as the initial stress of the piezoelectric plate. Based on nonlinear elastic dynamic governing equations, using the displacement method, an impedance analysis model of an embedded piezoelectric plate considering initial stress is established and verified through a fundamental experiment and a finite element analysis. Based on this, the explicit analytical relation between initial stress and impedance characterizations is provided, the mechanism of the effect of initial stress on the impedance characterizations is revealed, and procedures to identify static stress using impedance characterizations is proposed. Moreover, the sensitivities of the impedance characterizations in response to the initial stress are thoroughly discussed. This study mainly provides a theoretical basis for monitoring static stress using the electromechanical impedance of an embedded piezoelectric plate. And the results of the present study can help with the performance prediction and design optimization of piezoelectric-based static stress sensors.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217096","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Working stress is an important indicator reflecting the health status of structures. Passive-monitoring technology using the piezoelectric effect can effectively monitor the dynamic stress of structures. However, under static loads, the charge generated by the piezoelectric devices can only be preserved when the external circuit impedance is infinitely large, which means passive-monitoring techniques are unable to monitor static and quasi-static stress caused by slow-changing actions. In current studies, experimental observations have shown that the impedance characteristics of piezoelectric devices are affected by external static loads, yet the underlying mechanisms remain inadequately explained. This is because the impedance characteristics of piezoelectric devices are actually dynamic characteristics under alternating voltage. Most existing impedance analysis models are based on linear elastic dynamics. Within this framework, the impact of static stress on dynamic characteristics, including impedance characteristics, cannot be addressed. Accounting for static stress in impedance modeling is a challenging problem. In this study, the static stress applied on an embedded piezoelectric plate is abstracted as the initial stress of the piezoelectric plate. Based on nonlinear elastic dynamic governing equations, using the displacement method, an impedance analysis model of an embedded piezoelectric plate considering initial stress is established and verified through a fundamental experiment and a finite element analysis. Based on this, the explicit analytical relation between initial stress and impedance characterizations is provided, the mechanism of the effect of initial stress on the impedance characterizations is revealed, and procedures to identify static stress using impedance characterizations is proposed. Moreover, the sensitivities of the impedance characterizations in response to the initial stress are thoroughly discussed. This study mainly provides a theoretical basis for monitoring static stress using the electromechanical impedance of an embedded piezoelectric plate. And the results of the present study can help with the performance prediction and design optimization of piezoelectric-based static stress sensors.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.