{"title":"A Deep Cryptographic Framework for Securing the Healthcare Network from Penetration.","authors":"Arjun Singh, Vijay Shankar Sharma, Shakila Basheer, Chiranji Lal Chowdhary","doi":"10.3390/s24217089","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring the security of picture data on a network presents considerable difficulties because of the requirement for conventional embedding systems, which ultimately leads to subpar performance. It poses a risk of unauthorized data acquisition and misuse. Moreover, the previous image security-based techniques faced several challenges, including high execution times. As a result, a novel framework called Graph Convolutional-Based Twofish Security (GCbTS) was introduced to secure the images used in healthcare. The medical data are gathered from the Kaggle site and included in the proposed architecture. Preprocessing is performed on the data inserted to remove noise, and the hash 1 value is computed. Using the generated key, these separated images are put through the encryption process to encrypt what they contain. Additionally, to verify the user's identity, the encrypted data calculates the hash 2 values contrasted alongside the hash 1 value. Following completion of the verification procedure, the data are restored to their original condition and made accessible to authorized individuals by decrypting them with the collective key. Additionally, to determine the effectiveness, the calculated results of the suggested model are connected to the operational copy, which depends on picture privacy.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217089","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring the security of picture data on a network presents considerable difficulties because of the requirement for conventional embedding systems, which ultimately leads to subpar performance. It poses a risk of unauthorized data acquisition and misuse. Moreover, the previous image security-based techniques faced several challenges, including high execution times. As a result, a novel framework called Graph Convolutional-Based Twofish Security (GCbTS) was introduced to secure the images used in healthcare. The medical data are gathered from the Kaggle site and included in the proposed architecture. Preprocessing is performed on the data inserted to remove noise, and the hash 1 value is computed. Using the generated key, these separated images are put through the encryption process to encrypt what they contain. Additionally, to verify the user's identity, the encrypted data calculates the hash 2 values contrasted alongside the hash 1 value. Following completion of the verification procedure, the data are restored to their original condition and made accessible to authorized individuals by decrypting them with the collective key. Additionally, to determine the effectiveness, the calculated results of the suggested model are connected to the operational copy, which depends on picture privacy.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.