A Deep Cryptographic Framework for Securing the Healthcare Network from Penetration.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-11-04 DOI:10.3390/s24217089
Arjun Singh, Vijay Shankar Sharma, Shakila Basheer, Chiranji Lal Chowdhary
{"title":"A Deep Cryptographic Framework for Securing the Healthcare Network from Penetration.","authors":"Arjun Singh, Vijay Shankar Sharma, Shakila Basheer, Chiranji Lal Chowdhary","doi":"10.3390/s24217089","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring the security of picture data on a network presents considerable difficulties because of the requirement for conventional embedding systems, which ultimately leads to subpar performance. It poses a risk of unauthorized data acquisition and misuse. Moreover, the previous image security-based techniques faced several challenges, including high execution times. As a result, a novel framework called Graph Convolutional-Based Twofish Security (GCbTS) was introduced to secure the images used in healthcare. The medical data are gathered from the Kaggle site and included in the proposed architecture. Preprocessing is performed on the data inserted to remove noise, and the hash 1 value is computed. Using the generated key, these separated images are put through the encryption process to encrypt what they contain. Additionally, to verify the user's identity, the encrypted data calculates the hash 2 values contrasted alongside the hash 1 value. Following completion of the verification procedure, the data are restored to their original condition and made accessible to authorized individuals by decrypting them with the collective key. Additionally, to determine the effectiveness, the calculated results of the suggested model are connected to the operational copy, which depends on picture privacy.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217089","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring the security of picture data on a network presents considerable difficulties because of the requirement for conventional embedding systems, which ultimately leads to subpar performance. It poses a risk of unauthorized data acquisition and misuse. Moreover, the previous image security-based techniques faced several challenges, including high execution times. As a result, a novel framework called Graph Convolutional-Based Twofish Security (GCbTS) was introduced to secure the images used in healthcare. The medical data are gathered from the Kaggle site and included in the proposed architecture. Preprocessing is performed on the data inserted to remove noise, and the hash 1 value is computed. Using the generated key, these separated images are put through the encryption process to encrypt what they contain. Additionally, to verify the user's identity, the encrypted data calculates the hash 2 values contrasted alongside the hash 1 value. Following completion of the verification procedure, the data are restored to their original condition and made accessible to authorized individuals by decrypting them with the collective key. Additionally, to determine the effectiveness, the calculated results of the suggested model are connected to the operational copy, which depends on picture privacy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
防止医疗网络被入侵的深度加密框架。
由于需要使用传统的嵌入系统,最终导致性能不佳,因此确保网络上图片数据的安全相当困难。这也带来了未经授权获取和滥用数据的风险。此外,以往基于图像安全性的技术面临着一些挑战,包括执行时间长。因此,我们引入了一种名为基于图卷积的双鱼安全(GCbTS)的新型框架,以确保医疗保健中使用的图像的安全。医疗数据是从 Kaggle 网站收集的,并包含在拟议的架构中。对插入的数据进行预处理以去除噪音,然后计算哈希 1 值。使用生成的密钥,对这些分离的图像进行加密处理,以加密其中包含的内容。此外,为了验证用户身份,加密数据会计算出与哈希 1 值相对应的哈希 2 值。完成验证程序后,数据将恢复到原始状态,并通过集体密钥解密后供授权人员访问。此外,为了确定有效性,建议模型的计算结果与操作副本相连接,这取决于图片的隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. A Study of the Effect of Temperature on the Capacitance Characteristics of a Metal-μhemisphere Resonant Gyroscope. Evaluating Alternative Registration Planes in Imageless, Computer-Assisted Navigation Systems for Direct Anterior Total Hip Arthroplasty. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1