{"title":"Super-Resolution Reconstruction of Remote Sensing Images Using Chaotic Mapping to Optimize Sparse Representation.","authors":"Hailin Fang, Liangliang Zheng, Wei Xu","doi":"10.3390/s24217030","DOIUrl":null,"url":null,"abstract":"<p><p>Current super-resolution algorithms exhibit limitations when processing noisy remote sensing images rich in surface information, as they tend to amplify noise during the recovery of high-frequency signals. To mitigate this issue, this paper presents a novel approach that incorporates the concept of compressed sensing and explores the super-resolution problem of remote sensing images for space cameras, particularly for high-speed imaging systems. The proposed algorithm employs K-singular value decomposition (K-SVD) to jointly train high- and low-resolution image blocks, updating them column by column to obtain overcomplete dictionary pairs. This approach compensates for the deficiency of fixed dictionaries in the original algorithm. In the process of dictionary updating, we innovatively integrate the circle chaotic mapping into the solution process of the dictionary sequence, replacing pseudorandom numbers. This integration facilitates balanced traversal and simplifies the search for global optimal solutions. For the optimization problem of sparse coefficients, we utilize the orthogonal matching pursuit method (OMP) instead of the L1 norm convex optimization method used in most reconstruction techniques, thereby complementing the K-SVD dictionary update algorithm. After upscaling and denoising the image using the dictionary pair mapping relationship, we further emphasize image edge details with local gradients as constraints. When compared with various representative super-resolution algorithms, our algorithm effectively filters out noise and stains in low-resolution images. It not only performs well visually but also stands out in objective evaluation indicators such as the peak signal-to-noise ratio and information entropy. The experimental results validate the effectiveness of the proposed method in super-resolution remote sensing images, yielding high-quality remote sensing image data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217030","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current super-resolution algorithms exhibit limitations when processing noisy remote sensing images rich in surface information, as they tend to amplify noise during the recovery of high-frequency signals. To mitigate this issue, this paper presents a novel approach that incorporates the concept of compressed sensing and explores the super-resolution problem of remote sensing images for space cameras, particularly for high-speed imaging systems. The proposed algorithm employs K-singular value decomposition (K-SVD) to jointly train high- and low-resolution image blocks, updating them column by column to obtain overcomplete dictionary pairs. This approach compensates for the deficiency of fixed dictionaries in the original algorithm. In the process of dictionary updating, we innovatively integrate the circle chaotic mapping into the solution process of the dictionary sequence, replacing pseudorandom numbers. This integration facilitates balanced traversal and simplifies the search for global optimal solutions. For the optimization problem of sparse coefficients, we utilize the orthogonal matching pursuit method (OMP) instead of the L1 norm convex optimization method used in most reconstruction techniques, thereby complementing the K-SVD dictionary update algorithm. After upscaling and denoising the image using the dictionary pair mapping relationship, we further emphasize image edge details with local gradients as constraints. When compared with various representative super-resolution algorithms, our algorithm effectively filters out noise and stains in low-resolution images. It not only performs well visually but also stands out in objective evaluation indicators such as the peak signal-to-noise ratio and information entropy. The experimental results validate the effectiveness of the proposed method in super-resolution remote sensing images, yielding high-quality remote sensing image data.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.