{"title":"TEA-GCN: Transformer-Enhanced Adaptive Graph Convolutional Network for Traffic Flow Forecasting.","authors":"Xiaxia He, Wenhui Zhang, Xiaoyu Li, Xiaodan Zhang","doi":"10.3390/s24217086","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic flow forecasting is crucial for improving urban traffic management and reducing resource consumption. Accurate traffic conditions prediction requires capturing the complex spatial-temporal dependencies inherent in traffic data. Traditional spatial-temporal graph modeling methods often rely on fixed road network structures, failing to account for the dynamic spatial correlations that vary over time. To address this, we propose a Transformer-Enhanced Adaptive Graph Convolutional Network (TEA-GCN) that alternately learns temporal and spatial correlations in traffic data layer-by-layer. Specifically, we design an adaptive graph convolutional module to dynamically capture implicit road dependencies at different time levels and a local-global temporal attention module to simultaneously capture long-term and short-term temporal dependencies. Experimental results on two public traffic datasets demonstrate the effectiveness of the proposed model compared to other state-of-the-art traffic flow prediction methods.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217086","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic flow forecasting is crucial for improving urban traffic management and reducing resource consumption. Accurate traffic conditions prediction requires capturing the complex spatial-temporal dependencies inherent in traffic data. Traditional spatial-temporal graph modeling methods often rely on fixed road network structures, failing to account for the dynamic spatial correlations that vary over time. To address this, we propose a Transformer-Enhanced Adaptive Graph Convolutional Network (TEA-GCN) that alternately learns temporal and spatial correlations in traffic data layer-by-layer. Specifically, we design an adaptive graph convolutional module to dynamically capture implicit road dependencies at different time levels and a local-global temporal attention module to simultaneously capture long-term and short-term temporal dependencies. Experimental results on two public traffic datasets demonstrate the effectiveness of the proposed model compared to other state-of-the-art traffic flow prediction methods.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.