Inhibition of CDGSH iron‑sulfur domain 2 exhibits tumor-suppressing effects on diffuse large B-cell lymphoma (DLBCL) by inducing ferroptosis through the regulation of the NRF2/SLC7A11/GPX4 pathway.
{"title":"Inhibition of CDGSH iron‑sulfur domain 2 exhibits tumor-suppressing effects on diffuse large B-cell lymphoma (DLBCL) by inducing ferroptosis through the regulation of the NRF2/SLC7A11/GPX4 pathway.","authors":"Jingjing Zhang, Ting Wang, Hui Zhang, Na Li, Bailing Liu, Ling Fang","doi":"10.1016/j.taap.2024.117148","DOIUrl":null,"url":null,"abstract":"<p><p>CDGSH iron‑sulfur domain 2 (CISD2) is recognized as a ferroptosis-related gene that has potential as a target for cancer treatment. However, it is still uncertain whether targeting CISD2 can modulate ferroptosis in diffuse large B-cell lymphoma (DLBCL) cells and exhibit cancer-suppressing effects. The present study thoroughly investigated the role of CISD2 in DLBCL. CISD2 was found to be overexpressed in DLBCL, and its inhibition resulted in substantial growth inhibition in DLBCL cells. The growth inhibition effect resulting from CISD2 silencing could be reversed by a ferroptosis inhibitor, whereas inhibitors of apoptosis and necrosis did not yield the same reversal. CISD2-silenced DLBCL cells exhibited increased sensitivity to growth inhibition induced by ferroptosis suppressors. The inhibition of CISD2 induced ferroptotic cell death in DLBCL cells, which was supported by the overproduction of lipid peroxides, depletion of glutathione, accumulation of iron, and increased presence of shrunken mitochondria. Further investigation revealed reduced levels of NRF2, GPX4, and SLC7A11 in CISD2-silenced DLBCL cells. The overexpression of NRF2 significantly reduced the occurrence of ferroptotic cell death in DLBCL cells in which CISD2 was silenced. Furthermore, CISD2 inhibition exhibited tumor-suppressing effects in vivo associated with the induction of ferroptotic cell death in xenografts. These findings suggest that CISD2inhibition has tumor-suppressing effects on DLBCL by promoting ferroptotic cell death via the NRF2/SLC7A11/GPX4 pathway. Therefore, CISD2 holds promise as a viable candidate target for treating DLBCL.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117148","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
CDGSH iron‑sulfur domain 2 (CISD2) is recognized as a ferroptosis-related gene that has potential as a target for cancer treatment. However, it is still uncertain whether targeting CISD2 can modulate ferroptosis in diffuse large B-cell lymphoma (DLBCL) cells and exhibit cancer-suppressing effects. The present study thoroughly investigated the role of CISD2 in DLBCL. CISD2 was found to be overexpressed in DLBCL, and its inhibition resulted in substantial growth inhibition in DLBCL cells. The growth inhibition effect resulting from CISD2 silencing could be reversed by a ferroptosis inhibitor, whereas inhibitors of apoptosis and necrosis did not yield the same reversal. CISD2-silenced DLBCL cells exhibited increased sensitivity to growth inhibition induced by ferroptosis suppressors. The inhibition of CISD2 induced ferroptotic cell death in DLBCL cells, which was supported by the overproduction of lipid peroxides, depletion of glutathione, accumulation of iron, and increased presence of shrunken mitochondria. Further investigation revealed reduced levels of NRF2, GPX4, and SLC7A11 in CISD2-silenced DLBCL cells. The overexpression of NRF2 significantly reduced the occurrence of ferroptotic cell death in DLBCL cells in which CISD2 was silenced. Furthermore, CISD2 inhibition exhibited tumor-suppressing effects in vivo associated with the induction of ferroptotic cell death in xenografts. These findings suggest that CISD2inhibition has tumor-suppressing effects on DLBCL by promoting ferroptotic cell death via the NRF2/SLC7A11/GPX4 pathway. Therefore, CISD2 holds promise as a viable candidate target for treating DLBCL.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.