Protein arginine methyltransferase 5 confers the resistance of triple-negative breast cancer to nanoparticle albumin-bound paclitaxel by enhancing autophagy through the dimethylation of ULK1.

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Toxicology and applied pharmacology Pub Date : 2024-11-07 DOI:10.1016/j.taap.2024.117145
Jing Kong, Yan Dong, Mengxuan Li, Jing Fan, Ting Wang
{"title":"Protein arginine methyltransferase 5 confers the resistance of triple-negative breast cancer to nanoparticle albumin-bound paclitaxel by enhancing autophagy through the dimethylation of ULK1.","authors":"Jing Kong, Yan Dong, Mengxuan Li, Jing Fan, Ting Wang","doi":"10.1016/j.taap.2024.117145","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy remains the major strategy for treating triple-negative breast cancer (TNBC); however, frequently acquired chemoresistance greatly limits the treatment outcomes. Protein arginine methyltransferase 5 (PRMT5), which modulates arginine methylation, is important in chemoresistance acquisition across various cancers. The function of PRMT5 in the development of chemoresistance in TNBC is still not well understood. This work focused on defining PRMT5's function in contributing to the chemoresistance in TNBC and demonstrating the possible mechanisms involved. Two TNBC cell lines resistant to nanoparticle albumin-bound paclitaxel (Nab-PTX), designated MDA-MB-231/R and MDA-MB-468/R, were developed. The expression of PRMT5 was markedly elevated in the cytoplasm of Nab-PTX-resistant cells accompanied with enhanced autophagy. The depletion of PRMT5 rendered these cells sensitive to Nab-PTX-evoked cytotoxicity. The autophagic flux was upregulated in Nab-PTX-resistant cells, which was markedly repressed by PRMT5 depletion. The dimethylation of ULK1 was markedly elevated in Nab-PTX-resistant cells, which was decreased by silencing PRMT5. Re-expression of PRMT5 in PRMT5-depleted cells restored the dimethylation and activation of ULK1 as well as the autophagic flux, while the catalytically-dead PRMT5 (R368A) mutant showed no significant effects. The depletion of PRMT5 rendered the subcutaneous tumors formed by Nab-PTX-resistant TNBC cells sensitive to Nab-PTX. The findings of this work illustrate that PRMT5 confers chemoresistance of TNBC by enhancing autophagy through dimethylation and the activation of ULK1, revealing a novel mechanism for understanding the acquisition of chemoresistance in TNBC. Targeting PRMT5 could be a viable approach for overcoming chemoresistance in the treatment of TNBC.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117145","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy remains the major strategy for treating triple-negative breast cancer (TNBC); however, frequently acquired chemoresistance greatly limits the treatment outcomes. Protein arginine methyltransferase 5 (PRMT5), which modulates arginine methylation, is important in chemoresistance acquisition across various cancers. The function of PRMT5 in the development of chemoresistance in TNBC is still not well understood. This work focused on defining PRMT5's function in contributing to the chemoresistance in TNBC and demonstrating the possible mechanisms involved. Two TNBC cell lines resistant to nanoparticle albumin-bound paclitaxel (Nab-PTX), designated MDA-MB-231/R and MDA-MB-468/R, were developed. The expression of PRMT5 was markedly elevated in the cytoplasm of Nab-PTX-resistant cells accompanied with enhanced autophagy. The depletion of PRMT5 rendered these cells sensitive to Nab-PTX-evoked cytotoxicity. The autophagic flux was upregulated in Nab-PTX-resistant cells, which was markedly repressed by PRMT5 depletion. The dimethylation of ULK1 was markedly elevated in Nab-PTX-resistant cells, which was decreased by silencing PRMT5. Re-expression of PRMT5 in PRMT5-depleted cells restored the dimethylation and activation of ULK1 as well as the autophagic flux, while the catalytically-dead PRMT5 (R368A) mutant showed no significant effects. The depletion of PRMT5 rendered the subcutaneous tumors formed by Nab-PTX-resistant TNBC cells sensitive to Nab-PTX. The findings of this work illustrate that PRMT5 confers chemoresistance of TNBC by enhancing autophagy through dimethylation and the activation of ULK1, revealing a novel mechanism for understanding the acquisition of chemoresistance in TNBC. Targeting PRMT5 could be a viable approach for overcoming chemoresistance in the treatment of TNBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白精氨酸甲基转移酶5通过ULK1的二甲基化增强自噬作用,从而使三阴性乳腺癌对纳米颗粒白蛋白结合型紫杉醇产生耐药性。
化疗仍然是治疗三阴性乳腺癌(TNBC)的主要策略;然而,经常获得的化疗耐药性极大地限制了治疗效果。蛋白精氨酸甲基转移酶 5(PRMT5)能调节精氨酸甲基化,在各种癌症的化疗耐药性获得过程中起着重要作用。PRMT5在TNBC化疗耐药性发展过程中的功能仍不十分清楚。这项工作的重点是确定 PRMT5 在 TNBC 化疗耐药性中的功能,并证明其中可能涉及的机制。研究人员开发了两种对纳米颗粒白蛋白结合型紫杉醇(Nab-PTX)耐药的 TNBC 细胞系,分别命名为 MDA-MB-231/R 和 MDA-MB-468/R。在Nab-PTX耐药细胞的细胞质中,PRMT5的表达明显升高,同时自噬作用增强。PRMT5的消耗使这些细胞对Nab-PTX诱发的细胞毒性敏感。Nab-PTX耐药细胞的自噬通量上调,PRMT5的缺失明显抑制了自噬通量。在Nab-PTX耐药细胞中,ULK1的二甲基化明显升高,而沉默PRMT5可降低ULK1的二甲基化。在PRMT5缺失的细胞中重新表达PRMT5可恢复ULK1的二甲基化和活化以及自噬通量,而催化死亡的PRMT5(R368A)突变体则无明显影响。PRMT5的耗竭使Nab-PTX耐药的TNBC细胞形成的皮下肿瘤对Nab-PTX敏感。这项研究结果表明,PRMT5通过二甲基化和激活ULK1来增强自噬,从而赋予TNBC化疗耐药性,为了解TNBC化疗耐药性的获得揭示了一种新的机制。靶向PRMT5可能是治疗TNBC克服化疗耐药性的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
期刊最新文献
ROS responsive nanozyme loaded with STING silencing for the treatment of sepsis-induced acute lung injury. Inhibition of CDGSH iron‑sulfur domain 2 exhibits tumor-suppressing effects on diffuse large B-cell lymphoma (DLBCL) by inducing ferroptosis through the regulation of the NRF2/SLC7A11/GPX4 pathway. Protein arginine methyltransferase 5 confers the resistance of triple-negative breast cancer to nanoparticle albumin-bound paclitaxel by enhancing autophagy through the dimethylation of ULK1. Network toxicology and cell experiments reveal the mechanism of DEHP-induced diabetic nephropathy via Wnt signaling pathway. New insights into the mechanisms underlying 5-hydroxymethylfurfural-induced suppression of testosterone biosynthesis in vivo and in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1