{"title":"Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation.","authors":"Zhiqiang Tan","doi":"10.1093/jrsssb/qkae034","DOIUrl":null,"url":null,"abstract":"<p><p>Consider sensitivity analysis for estimating average treatment effects under unmeasured confounding, assumed to satisfy a marginal sensitivity model. At the population level, we provide new representations for the sharp population bounds and doubly robust estimating functions. We also derive new, relaxed population bounds, depending on weighted linear outcome quantile regression. At the sample level, we develop new methods and theory for obtaining not only doubly robust point estimators for the relaxed population bounds with respect to misspecification of a propensity score model or an outcome mean regression model, but also model-assisted confidence intervals which are valid if the propensity score model is correctly specified, but the outcome quantile and mean regression models may be misspecified. The relaxed population bounds reduce to the sharp bounds if outcome quantile regression is correctly specified. For a linear outcome mean regression model, the confidence intervals are also doubly robust. Our methods involve regularized calibrated estimation, with Lasso penalties but carefully chosen loss functions, for fitting propensity score and outcome mean and quantile regression models. We present a simulation study and an empirical application to an observational study on the effects of right-heart catheterization. The proposed method is implemented in the R package RCALsa.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkae034","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Consider sensitivity analysis for estimating average treatment effects under unmeasured confounding, assumed to satisfy a marginal sensitivity model. At the population level, we provide new representations for the sharp population bounds and doubly robust estimating functions. We also derive new, relaxed population bounds, depending on weighted linear outcome quantile regression. At the sample level, we develop new methods and theory for obtaining not only doubly robust point estimators for the relaxed population bounds with respect to misspecification of a propensity score model or an outcome mean regression model, but also model-assisted confidence intervals which are valid if the propensity score model is correctly specified, but the outcome quantile and mean regression models may be misspecified. The relaxed population bounds reduce to the sharp bounds if outcome quantile regression is correctly specified. For a linear outcome mean regression model, the confidence intervals are also doubly robust. Our methods involve regularized calibrated estimation, with Lasso penalties but carefully chosen loss functions, for fitting propensity score and outcome mean and quantile regression models. We present a simulation study and an empirical application to an observational study on the effects of right-heart catheterization. The proposed method is implemented in the R package RCALsa.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.