Thiol-ene click chemistry: Enabling 3D printing of natural-based inks for biomedical applications

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Materials Science & Engineering C-Materials for Biological Applications Pub Date : 2024-11-05 DOI:10.1016/j.bioadv.2024.214105
Andreia P. Malafaia, Rita Sobreiro-Almeida, João M.M. Rodrigues, João F. Mano
{"title":"Thiol-ene click chemistry: Enabling 3D printing of natural-based inks for biomedical applications","authors":"Andreia P. Malafaia,&nbsp;Rita Sobreiro-Almeida,&nbsp;João M.M. Rodrigues,&nbsp;João F. Mano","doi":"10.1016/j.bioadv.2024.214105","DOIUrl":null,"url":null,"abstract":"<div><div>Over the last decade, 3D bioprinting has gained increasing popularity, being a technique capable of producing well-defined tissue-like structures. One of its most groundbreaking features is the ability to create personalized therapies tailored to the specific demands of individual patients. However, challenges including the selection of materials and crosslinking strategies, still need to be addressed to enhance ink characteristics and develop robust biomaterials. Herein, the authors showcase the potential of overcoming these challenges, focusing on the use of versatile, fast, and selective thiol-ene click chemistry to formulate inks for 3D bioprinting. The exploration of natural polymers, specifically proteins and polysaccharides, will be discussed and highlighted, outlining the advantages and disadvantages of this approach.</div><div>Leveraging advanced thiol-ene click chemistry and natural polymers in the development of 3D printable bioinks may face the current challenges and is envisioned to pave the way towards innovative and personalized biomaterials for biomedical applications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"167 ","pages":"Article 214105"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003480","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last decade, 3D bioprinting has gained increasing popularity, being a technique capable of producing well-defined tissue-like structures. One of its most groundbreaking features is the ability to create personalized therapies tailored to the specific demands of individual patients. However, challenges including the selection of materials and crosslinking strategies, still need to be addressed to enhance ink characteristics and develop robust biomaterials. Herein, the authors showcase the potential of overcoming these challenges, focusing on the use of versatile, fast, and selective thiol-ene click chemistry to formulate inks for 3D bioprinting. The exploration of natural polymers, specifically proteins and polysaccharides, will be discussed and highlighted, outlining the advantages and disadvantages of this approach.
Leveraging advanced thiol-ene click chemistry and natural polymers in the development of 3D printable bioinks may face the current challenges and is envisioned to pave the way towards innovative and personalized biomaterials for biomedical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巯基烯点击化学:实现用于生物医学应用的天然油墨 3D 打印。
在过去的十年中,三维生物打印技术越来越受到人们的青睐,因为这种技术能够制造出轮廓分明的类组织结构。其最具突破性的特点之一是能够根据患者的具体需求量身定制个性化疗法。然而,要增强墨水特性并开发出坚固的生物材料,仍需应对包括材料选择和交联策略在内的各种挑战。在本文中,作者展示了克服这些挑战的潜力,重点是利用多功能、快速和选择性的硫醇-烯点击化学来配制用于三维生物打印的墨水。作者将讨论和强调对天然聚合物(特别是蛋白质和多糖)的探索,并概述这种方法的优缺点。利用先进的巯基烯点击化学和天然聚合物来开发可三维打印的生物墨水可以应对当前的挑战,并有望为生物医学应用领域的创新和个性化生物材料铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
期刊最新文献
Biotinylated platinum(IV)-conjugated graphene oxide nanoparticles for targeted chemo-photothermal combination therapy in breast cancer siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis Corrigendum to "Optimising a self-assembling peptide hydrogel as a Matrigel alternative for 3-dimensional mammary epithelial cell culture" [Biomater. Adv. volume 160, (2024) 213847]. Exacerbated hepatotoxicity in in vivo and in vitro non-alcoholic fatty liver models by biomineralized copper sulfide nanoparticles In vitro and in vivo investigations of hemoglobin-loaded PEGylated ZIF-8 nanoparticles as oxygen carriers for emergency transfusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1