首页 > 最新文献

Materials Science & Engineering C-Materials for Biological Applications最新文献

英文 中文
Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-14 DOI: 10.1016/j.bioadv.2025.214234
Nina Kostevšek
This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.
{"title":"Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics","authors":"Nina Kostevšek","doi":"10.1016/j.bioadv.2025.214234","DOIUrl":"10.1016/j.bioadv.2025.214234","url":null,"abstract":"<div><div>This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214234"},"PeriodicalIF":5.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Regenerated silk fibroin and alginate composite hydrogel dressings loaded with curcumin nanoparticles for bacterial-infected wound closure" [Biomater. Adv. 149 (2023) 213405].
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-11 DOI: 10.1016/j.bioadv.2025.214224
Yanting Jing, Liming Ruan, Guohua Jiang, Lei Nie, Amin Shavandi, Yanfang Sun, Jingjing Xu, Xia Shao, Junlan Zhu
{"title":"Corrigendum to \"Regenerated silk fibroin and alginate composite hydrogel dressings loaded with curcumin nanoparticles for bacterial-infected wound closure\" [Biomater. Adv. 149 (2023) 213405].","authors":"Yanting Jing, Liming Ruan, Guohua Jiang, Lei Nie, Amin Shavandi, Yanfang Sun, Jingjing Xu, Xia Shao, Junlan Zhu","doi":"10.1016/j.bioadv.2025.214224","DOIUrl":"https://doi.org/10.1016/j.bioadv.2025.214224","url":null,"abstract":"","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":" ","pages":"214224"},"PeriodicalIF":5.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "A balanced charged hydrogel with anti-biofouling and antioxidant properties for treatment of irradiation-induced skin injury" [Mater. Sci. Eng. C 131 (2021) 112538].
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-10 DOI: 10.1016/j.bioadv.2025.214225
Jiamin Zhang, Yingnan Zhu, Yumin Zhang, Wenjing Lin, Jia Ke, Jianfeng Liu, Lei Zhang, Jinjian Liu
{"title":"Corrigendum to \"A balanced charged hydrogel with anti-biofouling and antioxidant properties for treatment of irradiation-induced skin injury\" [Mater. Sci. Eng. C 131 (2021) 112538].","authors":"Jiamin Zhang, Yingnan Zhu, Yumin Zhang, Wenjing Lin, Jia Ke, Jianfeng Liu, Lei Zhang, Jinjian Liu","doi":"10.1016/j.bioadv.2025.214225","DOIUrl":"https://doi.org/10.1016/j.bioadv.2025.214225","url":null,"abstract":"","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":" ","pages":"214225"},"PeriodicalIF":5.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skin-inspired elastomer-hydrogel Janus fibrous membrane creates a superior pro-regenerative microenvironment toward complete skin regeneration
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-08 DOI: 10.1016/j.bioadv.2025.214227
Fengyu Wang , Yuxin Chen , Lu Chai , Peilin Liao , Zhengbo Wen , Yiyu Wang , Minmin Zhang , Honglin Chen
The complete regeneration of deep cutaneous wounds remains a challenge. Development of advanced biomaterials that more closely resemble the natural healing environments of skin is a promising strategy. In the present study, inspired by the human skins, an elastomer-hydrogel bilayer fibrous membrane was fabricated for cutaneous wound healing. The elastomer layer, made of poly (trimethylene carbonate) (PTMC), mimics human epidermis, including a similar wettability (around 80°), a compact structure, flexibility, excellent moisture retention, and bacterial pathogen blocking. The hydrogel fiber layer that directly contacts the wound surface was made of hydrophilic gelatin hydrogel fibers, providing an advanced pro-regeneration microenvironment for wound healing, including a moist environment and a mesh-like structure and patterns. Bioactive agents (e.g. stem cell-derived exosomes) could be feasibly incorporated into the hydrogel fiber layer to further enhance the therapeutic outcome. In vivo studies demonstrated that such biomimetic elastomer-hydrogel hybrid fibrous membrane could dramatically enhance the skin regeneration as evidenced by faster wound closure rates, enhanced vascularization, promoted collagen deposition, reduced inflammation, and promoted skin appendage regeneration. Our work provides a new avenue for designing biomimetic wound dressings for cutaneous wound healing.
{"title":"Skin-inspired elastomer-hydrogel Janus fibrous membrane creates a superior pro-regenerative microenvironment toward complete skin regeneration","authors":"Fengyu Wang ,&nbsp;Yuxin Chen ,&nbsp;Lu Chai ,&nbsp;Peilin Liao ,&nbsp;Zhengbo Wen ,&nbsp;Yiyu Wang ,&nbsp;Minmin Zhang ,&nbsp;Honglin Chen","doi":"10.1016/j.bioadv.2025.214227","DOIUrl":"10.1016/j.bioadv.2025.214227","url":null,"abstract":"<div><div>The complete regeneration of deep cutaneous wounds remains a challenge. Development of advanced biomaterials that more closely resemble the natural healing environments of skin is a promising strategy. In the present study, inspired by the human skins, an elastomer-hydrogel bilayer fibrous membrane was fabricated for cutaneous wound healing. The elastomer layer, made of poly (trimethylene carbonate) (PTMC), mimics human epidermis, including a similar wettability (around 80°), a compact structure, flexibility, excellent moisture retention, and bacterial pathogen blocking. The hydrogel fiber layer that directly contacts the wound surface was made of hydrophilic gelatin hydrogel fibers, providing an advanced pro-regeneration microenvironment for wound healing, including a moist environment and a mesh-like structure and patterns. Bioactive agents (e.g. stem cell-derived exosomes) could be feasibly incorporated into the hydrogel fiber layer to further enhance the therapeutic outcome. In vivo studies demonstrated that such biomimetic elastomer-hydrogel hybrid fibrous membrane could dramatically enhance the skin regeneration as evidenced by faster wound closure rates, enhanced vascularization, promoted collagen deposition, reduced inflammation, and promoted skin appendage regeneration. Our work provides a new avenue for designing biomimetic wound dressings for cutaneous wound healing.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214227"},"PeriodicalIF":5.5,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visible UCNPs-magnesium matrix composites for optimizing degradation and improving bone regeneration
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-06 DOI: 10.1016/j.bioadv.2025.214223
Meng Wang , Xirao Sun , Jingxin Yang , Yanfu Wang , Siyu Song , Zheng Shi , Danfang Sun , Dan Li , Jianduo Chen , Chengyue Wang
Magnesium alloys have attracted significant interest in bone tissue engineering because of their beneficial characteristics. However, their widespread application is still hindered by rapid degradation rates and the challenges associated with real-time monitoring. Given that up-conversion nanoparticles (UCNPs) possess imaging capabilities and that nanofillers can enhance the degradation behavior of these materials, we have utilized UCNPs to develop metal matrix composites. Specifically, we employed powder metallurgy technology to prepare up-conversion nanoparticles/magnesium/zinc composites (UCNPs/Mg/Zn). We systematically studied the mechanical properties, degradation behavior, biocompatibility, osteogenic activity, and degradation monitoring of the composite. In vivo and in vitro degradation studies demonstrated that the composite containing 10 % UCNPs, 86 % Mg, and 4 % Zn (10U-Mg-4Zn) gradually degrades over time, with luminous intensity initially increasing from weak to strong before subsequently diminishing. Furthermore, compared to complexes containing 96 % Mg and 4 % Zn (Mg4Zn), the degradation rate of the 10U-Mg-4Zn complex was significantly reduced, while cytocompatibility improved and osteogenic differentiation of mouse embryonic osteoblasts (MC3T3-E1) was markedly enhanced. Therefore, the 10U-Mg-4Zn composite not only demonstrates good degradation performance and supports bone tissue regeneration but also facilitates the monitoring of material degradation, thereby providing a novel method for material evaluation and a fresh perspective for developing new magnesium matrix composites.
{"title":"Visible UCNPs-magnesium matrix composites for optimizing degradation and improving bone regeneration","authors":"Meng Wang ,&nbsp;Xirao Sun ,&nbsp;Jingxin Yang ,&nbsp;Yanfu Wang ,&nbsp;Siyu Song ,&nbsp;Zheng Shi ,&nbsp;Danfang Sun ,&nbsp;Dan Li ,&nbsp;Jianduo Chen ,&nbsp;Chengyue Wang","doi":"10.1016/j.bioadv.2025.214223","DOIUrl":"10.1016/j.bioadv.2025.214223","url":null,"abstract":"<div><div>Magnesium alloys have attracted significant interest in bone tissue engineering because of their beneficial characteristics. However, their widespread application is still hindered by rapid degradation rates and the challenges associated with real-time monitoring. Given that up-conversion nanoparticles (UCNPs) possess imaging capabilities and that nanofillers can enhance the degradation behavior of these materials, we have utilized UCNPs to develop metal matrix composites. Specifically, we employed powder metallurgy technology to prepare up-conversion nanoparticles/magnesium/zinc composites (UCNPs/Mg/Zn). We systematically studied the mechanical properties, degradation behavior, biocompatibility, osteogenic activity, and degradation monitoring of the composite. In vivo and in vitro degradation studies demonstrated that the composite containing 10 % UCNPs, 86 % Mg, and 4 % Zn (10U-Mg-4Zn) gradually degrades over time, with luminous intensity initially increasing from weak to strong before subsequently diminishing. Furthermore, compared to complexes containing 96 % Mg and 4 % Zn (Mg<img>4Zn), the degradation rate of the 10U-Mg-4Zn complex was significantly reduced, while cytocompatibility improved and osteogenic differentiation of mouse embryonic osteoblasts (MC3T3-E1) was markedly enhanced. Therefore, the 10U-Mg-4Zn composite not only demonstrates good degradation performance and supports bone tissue regeneration but also facilitates the monitoring of material degradation, thereby providing a novel method for material evaluation and a fresh perspective for developing new magnesium matrix composites.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214223"},"PeriodicalIF":5.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143231140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Niche-inspired collagen infused melt electrowritten scaffolds for craniofacial bone regeneration
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-06 DOI: 10.1016/j.bioadv.2025.214222
Arwa Daghrery , Renan Dal-Fabbro , Jinping Xu , Darnell Kaigler , Mylène de Ruijter , Debby Gawlitta , Jos Malda , Marco C. Bottino
Advances in tissue engineering are focused on devising improved therapeutics to reconstruct craniofacial bones. In cell-based strategies, biomaterials with specific physicochemical properties can mimic natural environments, supporting stem cell renewal, survivability, and cell fate. This study highlights the engineering of a 3D-printed (Melt Electrowritten, MEW) fluorinated‑calcium phosphate (F/CaP)-coated polymeric scaffold infused with collagen (COL) that boosts the performance of transplanted alveolar bone-derived mesenchymal stem cells (aBMSCs). Electron microscopy revealed micron-sized (2.7 μm) polymeric fibers forming a porous (500 μm fiber strand spacing) composite scaffold with a uniform F/CaP coating homogeneously infiltrated with collagen. In vitro, our findings underscored the cytocompatibility of the collagen-infused F/CaP-coated composite scaffold, fostering a suitable environment for aBMSCs proliferation and differentiation. Cells within the F/CaP-coated constructs exhibited upregulated osteogenic gene activity, and the addition of collagen augmented the expression of critical bone-forming genes (i.e., Runx2 and OCN). After in vivo implantation, the scaffolds integrated well with the surrounding host tissue, supporting extensive blood vessel infiltration. Notably, the collagen-infused F/CaP-coated composite scaffolds showed an increased CD31-positive vessel growth compared to the non-coated counterparts. At 8 weeks, aBMSCs-laden F/CaP-Coated+COL composite scaffolds exhibited robust bone formation, creating connecting bony bridges in calvarial defects. Importantly, F/CaP-Coated+COL composite scaffolds displayed pronounced OCN expression, indicating enhanced osteogenic potential. Thus, the engineered F/CaP-coated polymeric scaffold laden with aBMSCs and infused with collagen has proven effective in supporting cell growth, vascularization, and rapid bone regeneration, suggesting potential for future clinical use.
{"title":"Niche-inspired collagen infused melt electrowritten scaffolds for craniofacial bone regeneration","authors":"Arwa Daghrery ,&nbsp;Renan Dal-Fabbro ,&nbsp;Jinping Xu ,&nbsp;Darnell Kaigler ,&nbsp;Mylène de Ruijter ,&nbsp;Debby Gawlitta ,&nbsp;Jos Malda ,&nbsp;Marco C. Bottino","doi":"10.1016/j.bioadv.2025.214222","DOIUrl":"10.1016/j.bioadv.2025.214222","url":null,"abstract":"<div><div>Advances in tissue engineering are focused on devising improved therapeutics to reconstruct craniofacial bones. In cell-based strategies, biomaterials with specific physicochemical properties can mimic natural environments, supporting stem cell renewal, survivability, and cell fate. This study highlights the engineering of a 3D-printed (Melt Electrowritten, MEW) fluorinated‑calcium phosphate (F/CaP)-coated polymeric scaffold infused with collagen (COL) that boosts the performance of transplanted alveolar bone-derived mesenchymal stem cells (aBMSCs). Electron microscopy revealed micron-sized (2.7 μm) polymeric fibers forming a porous (500 μm fiber strand spacing) composite scaffold with a uniform F/CaP coating homogeneously infiltrated with collagen. <em>In vitro</em>, our findings underscored the cytocompatibility of the collagen-infused F/CaP-coated composite scaffold, fostering a suitable environment for aBMSCs proliferation and differentiation. Cells within the F/CaP-coated constructs exhibited upregulated osteogenic gene activity, and the addition of collagen augmented the expression of critical bone-forming genes (<em>i.e.,</em> Runx2 and OCN). After <em>in vivo</em> implantation, the scaffolds integrated well with the surrounding host tissue, supporting extensive blood vessel infiltration. Notably, the collagen-infused F/CaP-coated composite scaffolds showed an increased CD31-positive vessel growth compared to the non-coated counterparts. At 8 weeks, aBMSCs-laden F/CaP-Coated+COL composite scaffolds exhibited robust bone formation, creating connecting bony bridges in calvarial defects. Importantly, F/CaP-Coated+COL composite scaffolds displayed pronounced OCN expression, indicating enhanced osteogenic potential. Thus, the engineered F/CaP-coated polymeric scaffold laden with aBMSCs and infused with collagen has proven effective in supporting cell growth, vascularization, and rapid bone regeneration, suggesting potential for future clinical use.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214222"},"PeriodicalIF":5.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An adhesive, antibacterial hydrogel wound dressing fabricated by dopamine-grafted oxidized sodium alginate and methacrylated carboxymethyl chitosan incorporated with Cu(II) complex
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-06 DOI: 10.1016/j.bioadv.2025.214217
Lei Wang , Huainian Wang , Haoming Dang , Baolong Niu , Hong Yan , Ruijie Guo , Huifang Wang , Pucha Zhou
Effective wound dressings play an important role in preventing infections and promoting wound healing. Most polysaccharide-based hydrogel dressings have the drawbacks of weak tissue adhesion and poor antibacterial properties. Herein, a multifunctional dopamine-grafted oxidized sodium alginate-methacrylated carboxymethyl chitosan/gallic acid‑copper(II) complex (OD-CM/GA-CuIIUV) hydrogel was fabricated through Schiff base bonds and photo-crosslinked polymerization between dopamine-grafted oxidized sodium alginate (OSA-DA) and methacrylated carboxymethyl chitosan (CMC-MA), with the integration of gallic acid‑copper(II) complexes (GA-CuII). The double cross-linked network and mussel-inspired adhesion mechanism endowed the hydrogel with attractive physicochemical properties, including excellent self-healing properties, pH-responsive biodegradability, robust toughness, and a maximum adhesion strength of 15.06 kPa. Moreover, the composite hydrogel exhibited an antibacterial ratio of > 99 % against Escherichia coli and Staphylococcus aureus, as well as good antioxidant activity. The MTT assay showed that the cell viability of the composite hydrogel reached > 85 %. The in vivo full-thickness skin defect healing assays in rats demonstrated that the composite hydrogel remarkably accelerated wound repair by attenuating the inflammatory response and promoting epithelial tissue remodeling. Therefore, this novel multifunctional hydrogel has potential applications in biomedical wound dressing.
{"title":"An adhesive, antibacterial hydrogel wound dressing fabricated by dopamine-grafted oxidized sodium alginate and methacrylated carboxymethyl chitosan incorporated with Cu(II) complex","authors":"Lei Wang ,&nbsp;Huainian Wang ,&nbsp;Haoming Dang ,&nbsp;Baolong Niu ,&nbsp;Hong Yan ,&nbsp;Ruijie Guo ,&nbsp;Huifang Wang ,&nbsp;Pucha Zhou","doi":"10.1016/j.bioadv.2025.214217","DOIUrl":"10.1016/j.bioadv.2025.214217","url":null,"abstract":"<div><div>Effective wound dressings play an important role in preventing infections and promoting wound healing. Most polysaccharide-based hydrogel dressings have the drawbacks of weak tissue adhesion and poor antibacterial properties. Herein, a multifunctional dopamine-grafted oxidized sodium alginate-methacrylated carboxymethyl chitosan/gallic acid‑copper(II) complex (OD-CM/GA-Cu<sup>II</sup><sub>UV</sub>) hydrogel was fabricated through Schiff base bonds and photo-crosslinked polymerization between dopamine-grafted oxidized sodium alginate (OSA-DA) and methacrylated carboxymethyl chitosan (CMC-MA), with the integration of gallic acid‑copper(II) complexes (GA-Cu<sup>II</sup>). The double cross-linked network and mussel-inspired adhesion mechanism endowed the hydrogel with attractive physicochemical properties, including excellent self-healing properties, pH-responsive biodegradability, robust toughness, and a maximum adhesion strength of 15.06 kPa. Moreover, the composite hydrogel exhibited an antibacterial ratio of &gt; 99 % against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, as well as good antioxidant activity. The MTT assay showed that the cell viability of the composite hydrogel reached &gt; 85 %. The in vivo full-thickness skin defect healing assays in rats demonstrated that the composite hydrogel remarkably accelerated wound repair by attenuating the inflammatory response and promoting epithelial tissue remodeling. Therefore, this novel multifunctional hydrogel has potential applications in biomedical wound dressing.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214217"},"PeriodicalIF":5.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced nanomicelles for targeted glioblastoma multiforme therapy
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-04 DOI: 10.1016/j.bioadv.2025.214221
P. Chithra, Dhiraj Bhatia, Raghu Solanki
Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor, classified as grade IV by the WHO. Despite standard treatments like surgical resection, radiotherapy and chemotherapy (i.e. temozolomide), GBM's prognosis remains poor due to its heterogeneity, recurrence and the impermeability of the blood-brain barrier (BBB). The exact cause of GBM is unclear with potential factors including genetic predisposition and ionizing radiation. Innovative approaches such as nanomicelles-nanoscale, self-assembled structures made from lipids and amphiphilic polymers show promise for GBM therapy. These nanocarriers enhance drug solubility and stability, enabling targeted delivery of therapeutic agents across the BBB. This review explores the synthesis strategies, characterization and applications of nanomicelles in GBM treatment. Nanomicelles improve the delivery of both hydrophobic and hydrophilic drugs and provide non-invasive delivery options. By offering site-specific targeting, biocompatibility, and stability, nanomicelles can potentially overcome the limitations of current GBM therapies. This review highlights recent advancements in the use of nanomicelles for delivering therapeutic agents and nucleic acids addressing the critical need for advanced treatments to improve GBM patient outcomes.
{"title":"Advanced nanomicelles for targeted glioblastoma multiforme therapy","authors":"P. Chithra,&nbsp;Dhiraj Bhatia,&nbsp;Raghu Solanki","doi":"10.1016/j.bioadv.2025.214221","DOIUrl":"10.1016/j.bioadv.2025.214221","url":null,"abstract":"<div><div>Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor, classified as grade IV by the WHO. Despite standard treatments like surgical resection, radiotherapy and chemotherapy (i.e. temozolomide), GBM's prognosis remains poor due to its heterogeneity, recurrence and the impermeability of the blood-brain barrier (BBB). The exact cause of GBM is unclear with potential factors including genetic predisposition and ionizing radiation. Innovative approaches such as nanomicelles-nanoscale, self-assembled structures made from lipids and amphiphilic polymers show promise for GBM therapy. These nanocarriers enhance drug solubility and stability, enabling targeted delivery of therapeutic agents across the BBB. This review explores the synthesis strategies, characterization and applications of nanomicelles in GBM treatment. Nanomicelles improve the delivery of both hydrophobic and hydrophilic drugs and provide non-invasive delivery options. By offering site-specific targeting, biocompatibility, and stability, nanomicelles can potentially overcome the limitations of current GBM therapies. This review highlights recent advancements in the use of nanomicelles for delivering therapeutic agents and nucleic acids addressing the critical need for advanced treatments to improve GBM patient outcomes.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214221"},"PeriodicalIF":5.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143231141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound stimulated piezoelectric antibacterial silk composite films guiding differentiation of mesenchymal stem cells
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-03 DOI: 10.1016/j.bioadv.2025.214218
Namrata Tiwari , Akshay Joshi , Ritu Das , Davinder Singh Lall , Kammari Suresh Chary , Neetu Singh
Smart materials for tissue engineering have been in extensive use for few decades now. This work delves into the exploration of ultrasound-stimulated piezoelectric and antibacterial silk-based composite films as a pioneering strategy to guide the differentiation of human mesenchymal stem cells into osteogenic lineage without the application of any exogenous growth factors. The study evaluates the biocompatibility and antibacterial attributes of these films, which incorporates Barium Titanate nanoparticles (BTNPs) along with Zinc Oxide nanoparticles for obtaining high piezo modulated stimuli response and antibacterial properties. Further, to enhance the piezoelectric capability, a novel calcium doped Barium Titanate (BCTs) nanoparticles were synthesized and incorporated in silk based films with ZnO. The choice of using calcium as a doping material allows to increase its piezoelectric potential and retain its biocompatibility. The results reveal that, under the influence of ultrasound stimulation, these composite films respond to mechanical cues like low frequency ultrasound stimulations to facilitate lineage-specific differentiation of the seeded human mesenchymal stem cells. Ultrasound stimulations being wireless avoid complicated wired electric circuits and are also known to activate calcium channels in the cells which aids osteogenesis. Significantly, our findings exhibit the profound potential of these films to exploit the piezoelectric properties of BCTs, effectively enhancing the differentiation trajectories of stem cells. Furthermore, their demonstrated antibacterial capacities underscore their pivotal role in infection prevention, an important facet in the domains of tissue engineering and medical implantation. This study strongly suggests the utility of ultrasound-stimulated silk-based composite films in advancing the frontiers of regenerative medicine and tissue engineering.
{"title":"Ultrasound stimulated piezoelectric antibacterial silk composite films guiding differentiation of mesenchymal stem cells","authors":"Namrata Tiwari ,&nbsp;Akshay Joshi ,&nbsp;Ritu Das ,&nbsp;Davinder Singh Lall ,&nbsp;Kammari Suresh Chary ,&nbsp;Neetu Singh","doi":"10.1016/j.bioadv.2025.214218","DOIUrl":"10.1016/j.bioadv.2025.214218","url":null,"abstract":"<div><div>Smart materials for tissue engineering have been in extensive use for few decades now. This work delves into the exploration of ultrasound-stimulated piezoelectric and antibacterial silk-based composite films as a pioneering strategy to guide the differentiation of human mesenchymal stem cells into osteogenic lineage without the application of any exogenous growth factors. The study evaluates the biocompatibility and antibacterial attributes of these films, which incorporates Barium Titanate nanoparticles (BTNPs) along with Zinc Oxide nanoparticles for obtaining high piezo modulated stimuli response and antibacterial properties. Further, to enhance the piezoelectric capability, a novel calcium doped Barium Titanate (BCTs) nanoparticles were synthesized and incorporated in silk based films with ZnO. The choice of using calcium as a doping material allows to increase its piezoelectric potential and retain its biocompatibility. The results reveal that, under the influence of ultrasound stimulation, these composite films respond to mechanical cues like low frequency ultrasound stimulations to facilitate lineage-specific differentiation of the seeded human mesenchymal stem cells. Ultrasound stimulations being wireless avoid complicated wired electric circuits and are also known to activate calcium channels in the cells which aids osteogenesis. Significantly, our findings exhibit the profound potential of these films to exploit the piezoelectric properties of BCTs, effectively enhancing the differentiation trajectories of stem cells. Furthermore, their demonstrated antibacterial capacities underscore their pivotal role in infection prevention, an important facet in the domains of tissue engineering and medical implantation. This study strongly suggests the utility of ultrasound-stimulated silk-based composite films in advancing the frontiers of regenerative medicine and tissue engineering.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214218"},"PeriodicalIF":5.5,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to “Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model” [Mater. Sci. Eng.: C 95 (2019) 8997] 叶酸共轭姜黄素负载生物聚合物阿拉伯胶微球用于三阴性乳腺癌治疗的体外和体内模型》的撤稿通知 [Mater. Sci. Eng.: C 95 (2019) 8997]。
IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-02-01 DOI: 10.1016/j.bioadv.2024.214077
Kunal Pal , Shubham Roy , Pravat Kumar Parida , Ananya Dutta , Souravi Bardhan , Sukhen Das , Kuladip Jana , Parimal Karmakar
{"title":"Retraction notice to “Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model” [Mater. Sci. Eng.: C 95 (2019) 8997]","authors":"Kunal Pal ,&nbsp;Shubham Roy ,&nbsp;Pravat Kumar Parida ,&nbsp;Ananya Dutta ,&nbsp;Souravi Bardhan ,&nbsp;Sukhen Das ,&nbsp;Kuladip Jana ,&nbsp;Parimal Karmakar","doi":"10.1016/j.bioadv.2024.214077","DOIUrl":"10.1016/j.bioadv.2024.214077","url":null,"abstract":"","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"167 ","pages":"Article 214077"},"PeriodicalIF":5.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Science & Engineering C-Materials for Biological Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1