{"title":"Photon-counting X-ray Computed Tomography Using a Cadmium Telluride Flat Panel Detector with High Spatial Resolutions and Dual-energy Selection.","authors":"Jiro Sato, Eiichi Sato, Kazuki Ito, Hodaka Moriyama, Osahiko Hagiwara, Toshiyuki Enomoto, Manabu Watanabe, Sohei Yoshida, Kunihiro Yoshioka, Hiroyuki Nitta","doi":"10.4103/jmp.jmp_33_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>To perform energy-dispersive X-ray imaging, we constructed a photon-counting X-ray computed tomography (CT) scanner to perform enhanced K-edge CT.</p><p><strong>Methods: </strong>X-ray photons penetrating through an object were detected using a cadmium telluride flat panel detector (FPD) with pixel dimensions of 100 × 100 mm<sup>2</sup>, and 720 radiograms from the FPD were sent to the personal computer to reconstruct tomograms. Gadolinium (Gd) K-edge energy is 50.2 keV, and Gd-Kedge CT was carried out using photons with an energy range of 50-100 keV.</p><p><strong>Results: </strong>Compared with low-energy CT of 15-50 keV, the gray density of muscle and bone substantially decreased, and the image contrast of Gd media was improved utilizing Gd-K-edge CT.</p><p><strong>Conclusion: </strong>Using the cone beam, the effective pixel dimensions were 80 × 80 μm<sup>2</sup>, and blood vessels were observed at a high contrast using Gd-Kedge CT.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"441-447"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_33_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: To perform energy-dispersive X-ray imaging, we constructed a photon-counting X-ray computed tomography (CT) scanner to perform enhanced K-edge CT.
Methods: X-ray photons penetrating through an object were detected using a cadmium telluride flat panel detector (FPD) with pixel dimensions of 100 × 100 mm2, and 720 radiograms from the FPD were sent to the personal computer to reconstruct tomograms. Gadolinium (Gd) K-edge energy is 50.2 keV, and Gd-Kedge CT was carried out using photons with an energy range of 50-100 keV.
Results: Compared with low-energy CT of 15-50 keV, the gray density of muscle and bone substantially decreased, and the image contrast of Gd media was improved utilizing Gd-K-edge CT.
Conclusion: Using the cone beam, the effective pixel dimensions were 80 × 80 μm2, and blood vessels were observed at a high contrast using Gd-Kedge CT.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.