A novel multi-omics approach for identifying key genes in intervertebral disc degeneration

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-11-09 DOI:10.1016/j.slast.2024.100223
Xuan Zhao , Qijun Wang , Shuaikang Wang , Wei Wang , Xiaolong Chen , Shibao Lu
{"title":"A novel multi-omics approach for identifying key genes in intervertebral disc degeneration","authors":"Xuan Zhao ,&nbsp;Qijun Wang ,&nbsp;Shuaikang Wang ,&nbsp;Wei Wang ,&nbsp;Xiaolong Chen ,&nbsp;Shibao Lu","doi":"10.1016/j.slast.2024.100223","DOIUrl":null,"url":null,"abstract":"<div><div>Many different cell types and complex molecular pathways are involved in intervertebral disc degeneration (IDD). We used a multi-omics approach combining single-cell RNA sequencing (scRNA-seq), differential gene expression analysis, and Mendelian randomization (MR) to clarify the underlying genetic architecture of IDD. We identified 1,164 differentially expressed genes (DEGs) across four important cell types associated with IDD using publicly available single-cell datasets. A thorough gene network analysis identified 122 genes that may be connected to programmed cell death (PCD), a crucial route in the etiology of IDD. SLC40A1, PTGS2, and GABARAPL1 have been identified as noteworthy regulatory genes that may impede the advancement of IDD. Furthermore, distinct cellular subpopulations and dynamic gene expression patterns were revealed by functional enrichment analysis and pseudo-temporal ordering of chondrocytes. Our results highlight the therapeutic potential of GABARAPL1, PTGS2, and SLC40A1 targeting in the treatment of IDD.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 6","pages":"Article 100223"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324001055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Many different cell types and complex molecular pathways are involved in intervertebral disc degeneration (IDD). We used a multi-omics approach combining single-cell RNA sequencing (scRNA-seq), differential gene expression analysis, and Mendelian randomization (MR) to clarify the underlying genetic architecture of IDD. We identified 1,164 differentially expressed genes (DEGs) across four important cell types associated with IDD using publicly available single-cell datasets. A thorough gene network analysis identified 122 genes that may be connected to programmed cell death (PCD), a crucial route in the etiology of IDD. SLC40A1, PTGS2, and GABARAPL1 have been identified as noteworthy regulatory genes that may impede the advancement of IDD. Furthermore, distinct cellular subpopulations and dynamic gene expression patterns were revealed by functional enrichment analysis and pseudo-temporal ordering of chondrocytes. Our results highlight the therapeutic potential of GABARAPL1, PTGS2, and SLC40A1 targeting in the treatment of IDD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别椎间盘退变关键基因的新型多指标方法
椎间盘变性(IDD)涉及许多不同的细胞类型和复杂的分子通路。我们采用了一种结合单细胞 RNA 测序、差异基因表达分析和孟德尔随机化的多组学方法来阐明 IDD 的潜在遗传结构。我们利用公开的单细胞数据集,在与 IDD 相关的四种重要细胞类型中发现了 1,164 个差异表达基因 (DEG)。通过全面的基因网络分析,我们发现了 122 个可能与程序性细胞死亡有关的基因,而程序性细胞死亡是 IDD 病因学中的一个重要途径。SLC40A1、PTGS2 和 GABARAPL1 被确定为可能阻碍 IDD 进展的值得注意的调控基因。此外,通过对软骨细胞进行功能富集分析和伪时序排序,还发现了不同的细胞亚群和动态基因表达模式。我们的研究结果凸显了 GABARAPL1、PTGS2 和 SLC40A1 靶向治疗 IDD 的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Model-Based Interactive Visualization for Complex Systems Requirements and Design in Joint Tests. Implementing enclosed sterile integrated robotic platforms to improve cell-based screening for drug discovery. Life Sciences Discovery and Technology Highlights. Notes on AEMS methods development for high throughput experimentation in drug discovery. Prosthesis repair of oral implants based on artificial intelligenc`e finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1