Prediction of postoperative mechanical complications in ASD patients based on total sequence and proportional score of spinal sagittal plane.

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-11-09 DOI:10.1016/j.slast.2024.100222
Wenbin Jiang, Huagang Shi, Tao Gu, Zonglin Cai, Qinglong Li
{"title":"Prediction of postoperative mechanical complications in ASD patients based on total sequence and proportional score of spinal sagittal plane.","authors":"Wenbin Jiang, Huagang Shi, Tao Gu, Zonglin Cai, Qinglong Li","doi":"10.1016/j.slast.2024.100222","DOIUrl":null,"url":null,"abstract":"<p><p>This article aimed to predict the occurrence of postoperative mechanical complications in adult spinal deformity (ASD) patients through the total sequence and proportional score of the spinal sagittal plane, to improve the quality of life of patients after surgery. The study adopted a comprehensive evaluation and data analysis method, including data collection and preprocessing, feature selection, model construction and training, and constructed a prediction model based on the Random Forest (RF) algorithm. The experimental results showed that the model significantly reduced the risk of complications in randomized controlled trials. The incidence of mechanical complications in the experimental group was 10 %, while that in the control group was 25 %, with statistical significance (P < 0.05). In addition, in retrospective data analysis, the accuracy of the article's model on five datasets ranged from 89 % to 93 %, outperforming logistic regression and support vector machine models, and performing well on other performance data. In prospective studies, the model's predictions showed good consistency with the actual occurrence of complications. Sensitivity analysis shows that the model has low sensitivity to changes in key parameters and exhibits stability, indicating that the model proposed in this article is suitable for uncertain medical environments. The expert rating further confirmed the effectiveness and practicality of the model in predicting postoperative mechanical complications in ASD patients, with the highest score reaching 4.9. These data demonstrate the high accuracy and clinical potential of the model in predicting postoperative complications of ASD.</p>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":" ","pages":"100222"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.slast.2024.100222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This article aimed to predict the occurrence of postoperative mechanical complications in adult spinal deformity (ASD) patients through the total sequence and proportional score of the spinal sagittal plane, to improve the quality of life of patients after surgery. The study adopted a comprehensive evaluation and data analysis method, including data collection and preprocessing, feature selection, model construction and training, and constructed a prediction model based on the Random Forest (RF) algorithm. The experimental results showed that the model significantly reduced the risk of complications in randomized controlled trials. The incidence of mechanical complications in the experimental group was 10 %, while that in the control group was 25 %, with statistical significance (P < 0.05). In addition, in retrospective data analysis, the accuracy of the article's model on five datasets ranged from 89 % to 93 %, outperforming logistic regression and support vector machine models, and performing well on other performance data. In prospective studies, the model's predictions showed good consistency with the actual occurrence of complications. Sensitivity analysis shows that the model has low sensitivity to changes in key parameters and exhibits stability, indicating that the model proposed in this article is suitable for uncertain medical environments. The expert rating further confirmed the effectiveness and practicality of the model in predicting postoperative mechanical complications in ASD patients, with the highest score reaching 4.9. These data demonstrate the high accuracy and clinical potential of the model in predicting postoperative complications of ASD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脊柱矢状面总序列和比例评分预测 ASD 患者术后机械并发症
本文旨在通过脊柱矢状面总序列和比例评分预测成人脊柱畸形(ASD)患者术后机械并发症的发生率,提高患者术后的生活质量。该研究采用综合评价和数据分析方法,包括数据采集和预处理、特征选择、模型构建和训练,构建了基于随机森林(RF)算法的预测模型。实验结果表明,该模型能显著降低随机对照试验中的并发症风险。实验组的机械并发症发生率为 10%,而对照组为 25%,差异有统计学意义(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Model-Based Interactive Visualization for Complex Systems Requirements and Design in Joint Tests. Implementing enclosed sterile integrated robotic platforms to improve cell-based screening for drug discovery. Life Sciences Discovery and Technology Highlights. Notes on AEMS methods development for high throughput experimentation in drug discovery. Prosthesis repair of oral implants based on artificial intelligenc`e finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1