Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-11-14 DOI:10.1186/s12964-024-01918-x
Luca Gelsomino, Amanda Caruso, Emine Tasan, Adele Elisabetta Leonetti, Rocco Malivindi, Giuseppina Daniela Naimo, Francesca Giordano, Salvatore Panza, Guowei Gu, Benedetta Perrone, Cinzia Giordano, Loredana Mauro, Bruno Nardo, Gianfranco Filippelli, Daniela Bonofiglio, Ines Barone, Suzanne A W Fuqua, Stefania Catalano, Sebastiano Andò
{"title":"Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts.","authors":"Luca Gelsomino, Amanda Caruso, Emine Tasan, Adele Elisabetta Leonetti, Rocco Malivindi, Giuseppina Daniela Naimo, Francesca Giordano, Salvatore Panza, Guowei Gu, Benedetta Perrone, Cinzia Giordano, Loredana Mauro, Bruno Nardo, Gianfranco Filippelli, Daniela Bonofiglio, Ines Barone, Suzanne A W Fuqua, Stefania Catalano, Sebastiano Andò","doi":"10.1186/s12964-024-01918-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endocrine therapy (ET) has improved the clinical outcomes of Estrogen receptor alpha-positive (ERɑ +) breast cancer (BC) patients, even though resistance to ET remains a clinical issue. Mutations in the hormone-binding domain of ERɑ represent an acquired intrinsic mechanism of ET resistance. However, the latter also depends on the multiple functional interactions between BC cells and the tumor microenvironment (TME). Here, we investigated how the most common Y537S-ERɑ mutation may influence the behavior of fibroblasts, the most prominent component of the TME.</p><p><strong>Methods: </strong>We conducted coculture experiments with normal human foreskin fibroblasts BJ1-hTERT (NFs), cancer-associated fibroblasts (CAFs), isolated from human BC specimens, and Y537S CRISPR-expressing MCF-7 BC cells (MCF-7YS). Mass spectrometry (MS) and Metacore analyses were performed to investigate how the functional interactions between BC cells/fibroblasts may affect their proteomic profile. The impact of fibroblasts on BC tumor growth and metastatic potential was evaluated in nude mice.</p><p><strong>Results: </strong>Mutant BC conditioned medium (CM) affected the morphology/proliferation/migration of both NFs and CAFs. 198 deregulated proteins signed the proteomic similarity profile of NFs exposed to the YS-CM and CAFs. Among the upregulated proteins, Yes-associated protein 1 (YAP1) was the main central hub in the direct interaction network. Increased YAP1 protein expression and activity were confirmed in NFs treated with MCF-7YS-CM. However, YAP1 activation appears to crosstalk with the insulin growth factor-1 receptor (IGF-1R). Higher amount of IGF-1 were noticed in the MCF-7YS-CM cells compared to the MCF-7P, and IGF-1 immunodepletion reversed the enhanced YAP1 expression and activity. Mutant cells upon exposure to the NF- and CAF-CM exhibited an enhanced proliferation/growth/migration/invasion compared to the MCF-7P. MCF-7YS cells when implanted with CAFs showed an early relative increased tumor volume compared to YS alone. No changes were observed when MCF-7P cells were co-implanted with CAFs. Compared with that in MCF-7P cells, the metastatic burden of MCF-7YS cells was intrinsically greater, and this effect was augmented upon treatment with NF-CM and further increased with CAF-CM.</p><p><strong>Conclusions: </strong>YS mutant BC cells induced the conversion of fibroblasts into CAFs, via YAP, which represent a potential therapeutic target which interrupt the functional interactions between mutant cells/TME and to be implemented in the novel therapeutic strategy of a subset of metastatic BC patients carrying the frequent Y537S mutations.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"545"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01918-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endocrine therapy (ET) has improved the clinical outcomes of Estrogen receptor alpha-positive (ERɑ +) breast cancer (BC) patients, even though resistance to ET remains a clinical issue. Mutations in the hormone-binding domain of ERɑ represent an acquired intrinsic mechanism of ET resistance. However, the latter also depends on the multiple functional interactions between BC cells and the tumor microenvironment (TME). Here, we investigated how the most common Y537S-ERɑ mutation may influence the behavior of fibroblasts, the most prominent component of the TME.

Methods: We conducted coculture experiments with normal human foreskin fibroblasts BJ1-hTERT (NFs), cancer-associated fibroblasts (CAFs), isolated from human BC specimens, and Y537S CRISPR-expressing MCF-7 BC cells (MCF-7YS). Mass spectrometry (MS) and Metacore analyses were performed to investigate how the functional interactions between BC cells/fibroblasts may affect their proteomic profile. The impact of fibroblasts on BC tumor growth and metastatic potential was evaluated in nude mice.

Results: Mutant BC conditioned medium (CM) affected the morphology/proliferation/migration of both NFs and CAFs. 198 deregulated proteins signed the proteomic similarity profile of NFs exposed to the YS-CM and CAFs. Among the upregulated proteins, Yes-associated protein 1 (YAP1) was the main central hub in the direct interaction network. Increased YAP1 protein expression and activity were confirmed in NFs treated with MCF-7YS-CM. However, YAP1 activation appears to crosstalk with the insulin growth factor-1 receptor (IGF-1R). Higher amount of IGF-1 were noticed in the MCF-7YS-CM cells compared to the MCF-7P, and IGF-1 immunodepletion reversed the enhanced YAP1 expression and activity. Mutant cells upon exposure to the NF- and CAF-CM exhibited an enhanced proliferation/growth/migration/invasion compared to the MCF-7P. MCF-7YS cells when implanted with CAFs showed an early relative increased tumor volume compared to YS alone. No changes were observed when MCF-7P cells were co-implanted with CAFs. Compared with that in MCF-7P cells, the metastatic burden of MCF-7YS cells was intrinsically greater, and this effect was augmented upon treatment with NF-CM and further increased with CAF-CM.

Conclusions: YS mutant BC cells induced the conversion of fibroblasts into CAFs, via YAP, which represent a potential therapeutic target which interrupt the functional interactions between mutant cells/TME and to be implemented in the novel therapeutic strategy of a subset of metastatic BC patients carrying the frequent Y537S mutations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有证据表明,CRISPR-Cas9 Y537S突变体表达的乳腺癌细胞会激活Yes-相关蛋白1,从而驱动正常成纤维细胞转化为癌症相关成纤维细胞。
背景:内分泌治疗(ET)改善了雌激素受体α阳性(ERɑ +)乳腺癌(BC)患者的临床疗效,但ET耐药仍是一个临床问题。ERɑ激素结合域的突变是ET耐药的一种获得性内在机制。然而,后者还取决于 BC 细胞与肿瘤微环境(TME)之间的多种功能相互作用。在此,我们研究了最常见的Y537S-ERɑ突变如何影响成纤维细胞的行为,成纤维细胞是TME最主要的组成部分:我们用正常人包皮成纤维细胞BJ1-hTERT(NFs)、从人类BC标本中分离出的癌相关成纤维细胞(CAFs)和Y537S CRISPR表达的MCF-7 BC细胞(MCF-7YS)进行了共培养实验。通过质谱(MS)和 Metacore 分析,研究了 BC 细胞/成纤维细胞之间的功能性相互作用如何影响其蛋白质组谱。在裸鼠体内评估了成纤维细胞对 BC 肿瘤生长和转移潜力的影响:结果:突变 BC 条件培养基(CM)影响了 NFs 和 CAFs 的形态/增殖/迁移。在暴露于YS-CM的NFs和CAFs的蛋白质组相似性图谱中,有198个蛋白表达失调。在上调的蛋白质中,Yes-相关蛋白1(YAP1)是直接相互作用网络的主要中心枢纽。经 MCF-7YS-CM 处理的 NF 中,YAP1 蛋白的表达和活性都得到了证实。不过,YAP1 的激活似乎与胰岛素生长因子-1 受体(IGF-1R)发生了交叉作用。与MCF-7P相比,MCF-7YS-CM细胞中的IGF-1含量更高,而IGF-1免疫清除可逆转YAP1表达和活性的增强。与 MCF-7P 相比,暴露于 NF- 和 CAF-CM 的突变细胞表现出更强的增殖/生长/迁移/侵袭能力。植入 CAF 的 MCF-7YS 细胞与单独植入 YS 的细胞相比,早期肿瘤体积相对增大。当 MCF-7P 细胞与 CAFs 共同植入时,未观察到任何变化。与MCF-7P细胞相比,MCF-7YS细胞的转移负荷更大,这种效应在NF-CM处理后增强,在CAF-CM处理后进一步增强:YS突变的BC细胞通过YAP诱导成纤维细胞转化为CAFs,而CAFs是一种潜在的治疗靶点,它能打断突变细胞/TME之间的功能性相互作用,可用于携带频繁Y537S突变的转移性BC患者的新型治疗策略中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species. IL-10 mediates pleural remodeling in systemic lupus erythematosus. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling. miR-23b-3p, miR-126-3p and GAS5 delivered by extracellular vesicles inhibit breast cancer xenografts in zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1