Frank Emmert-Streib, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja
{"title":"Complexity data science: A spin-off from digital twins.","authors":"Frank Emmert-Streib, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja","doi":"10.1093/pnasnexus/pgae456","DOIUrl":null,"url":null,"abstract":"<p><p>Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"3 11","pages":"pgae456"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.