Jiahui Chen, Yuanchao Li, Xiaoqi Dai, Mei Huang, Meiling Chen, Yifei Zhan, Yaochuan Guo, Yuxuan Du, Liuqiang Li, Meiqin Liu, Maofang Huang, Jun Bian, Dehui Lai
{"title":"Low-intensity pulsed ultrasound promotes cell viability of hUSCs in volumetric bioprinting scaffolds via PI3K/Akt and ERK1/2 pathways.","authors":"Jiahui Chen, Yuanchao Li, Xiaoqi Dai, Mei Huang, Meiling Chen, Yifei Zhan, Yaochuan Guo, Yuxuan Du, Liuqiang Li, Meiqin Liu, Maofang Huang, Jun Bian, Dehui Lai","doi":"10.1088/1748-605X/ad920f","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) on human urinary-derived stem cells (hUSCs) viability within three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. hUSCs were integrated into GelMA bio-inks at concentrations ranging from 2.5% to 10% w/v and then bioprinted using a volumetic-based method. Subsequent exposure of these scaffolds to LIPUS under varying parameters or sham irradiation aimed at optimizing the LIPUS treatment. Assessment of hUSCs viability employed Cell Counting Kit-8 (CCK8), cell cycle analysis, and live&dead cell double staining assays. Additionally, Western blot analysis was conducted to determine protein expression levels. With 3D bio-printed cell-laden GelMA scaffolds successfully constructed, LIPUS promoted the proliferation of hUSCs. Optimal LIPUS conditions, as determined through CCK8 and live&dead cell double staining assays, was achieved at a frequency of 1.5 MHz, a spatial-average temporal-average intensity (ISATA) of 150 mW cm<sup>-2</sup>, with an exposure duration of 10 min per session administered consecutively for two sessions. LIPUS facilitated the transition from G0/G1 phase to S and G2/M phases and enhanced the phosphorylation of ERK1/2 and PI3K-Akt. Inhibition of ERK1/2 (U0126) and PI3K (LY294002) significantly attenuated LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt respectively, both of which decreased the hUSC viability within 3D bio-printed GelMA scaffolds. Applying a LIPUS treatment at an ISATA of 150 mW cm<sup>-2</sup>promotes the growth of hUSCs within 3D bio-printed GelMA scaffolds through modulating ERK1/2 and PI3K-Akt signaling pathways.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad920f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) on human urinary-derived stem cells (hUSCs) viability within three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. hUSCs were integrated into GelMA bio-inks at concentrations ranging from 2.5% to 10% w/v and then bioprinted using a volumetic-based method. Subsequent exposure of these scaffolds to LIPUS under varying parameters or sham irradiation aimed at optimizing the LIPUS treatment. Assessment of hUSCs viability employed Cell Counting Kit-8 (CCK8), cell cycle analysis, and live&dead cell double staining assays. Additionally, Western blot analysis was conducted to determine protein expression levels. With 3D bio-printed cell-laden GelMA scaffolds successfully constructed, LIPUS promoted the proliferation of hUSCs. Optimal LIPUS conditions, as determined through CCK8 and live&dead cell double staining assays, was achieved at a frequency of 1.5 MHz, a spatial-average temporal-average intensity (ISATA) of 150 mW cm-2, with an exposure duration of 10 min per session administered consecutively for two sessions. LIPUS facilitated the transition from G0/G1 phase to S and G2/M phases and enhanced the phosphorylation of ERK1/2 and PI3K-Akt. Inhibition of ERK1/2 (U0126) and PI3K (LY294002) significantly attenuated LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt respectively, both of which decreased the hUSC viability within 3D bio-printed GelMA scaffolds. Applying a LIPUS treatment at an ISATA of 150 mW cm-2promotes the growth of hUSCs within 3D bio-printed GelMA scaffolds through modulating ERK1/2 and PI3K-Akt signaling pathways.