Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.

Shaojie Chang, John C Benson, John I Lane, Michael R Bruesewitz, Joseph R Swicklik, Jamison E Thorne, Emily K Koons, Matthew L Carlson, Cynthia H McCollough, Shuai Leng
{"title":"Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.","authors":"Shaojie Chang, John C Benson, John I Lane, Michael R Bruesewitz, Joseph R Swicklik, Jamison E Thorne, Emily K Koons, Matthew L Carlson, Cynthia H McCollough, Shuai Leng","doi":"10.3174/ajnr.A8572","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating use of smoother reconstruction kernels that reduce resolution below the system's 0.110 mm maximum spatial resolution. To address this, a denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization.</p><p><strong>Materials and methods: </strong>With IRB approval, CNN was trained on 6 clinical temporal bone patient cases (1,885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha, Siemens). Images were reconstructed using iterative reconstruction at strength 3 (QIR3) with both clinical routine (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1. Three image series (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) for each case were randomized for review by two neuroradiologists, assessing overall quality and delineation of the modiolus, stapes footplate, and incudomallear joint.</p><p><strong>Results: </strong>CNN reduced noise by 80% compared to Hr96-QIR3 and 50% relative to Hr84-QIR3, while maintaining high resolution. When compared to the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 HU to 47.35 HU) and improved SSIM (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (p<0.001). Readers preferred Hr96-CNN for all three structures.</p><p><strong>Conclusions: </strong>The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomical visualization.<b>ABBREVIATIONS:</b> PCD = Photon-counting-detector; UHR = Ultra-high-resolution; IR = Iterative reconstruction; CNN = Convolutional neural network; SSIM: Structural similarity index.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating use of smoother reconstruction kernels that reduce resolution below the system's 0.110 mm maximum spatial resolution. To address this, a denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization.

Materials and methods: With IRB approval, CNN was trained on 6 clinical temporal bone patient cases (1,885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha, Siemens). Images were reconstructed using iterative reconstruction at strength 3 (QIR3) with both clinical routine (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1. Three image series (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) for each case were randomized for review by two neuroradiologists, assessing overall quality and delineation of the modiolus, stapes footplate, and incudomallear joint.

Results: CNN reduced noise by 80% compared to Hr96-QIR3 and 50% relative to Hr84-QIR3, while maintaining high resolution. When compared to the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 HU to 47.35 HU) and improved SSIM (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (p<0.001). Readers preferred Hr96-CNN for all three structures.

Conclusions: The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomical visualization.ABBREVIATIONS: PCD = Photon-counting-detector; UHR = Ultra-high-resolution; IR = Iterative reconstruction; CNN = Convolutional neural network; SSIM: Structural similarity index.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用专用去噪卷积神经网络的超高分辨率光子计数探测器 CT,用于增强时态骨成像。
背景和目的:超高分辨率(UHR)光子计数探测器(PCD)CT 可提高图像分辨率,但会增加噪声,因此有必要使用更平滑的重建内核,以降低分辨率,使其低于系统的 0.110 毫米最大空间分辨率。为了解决这个问题,我们开发了一种去噪卷积神经网络(CNN),以减少使用现有最清晰重建内核重建的图像中的噪声,同时保持分辨率以增强颞骨的可视化:经 IRB 批准,使用双源 PCD-CT(NAEOTOM Alpha,西门子)对 6 例临床颞骨患者(1,885 幅图像)进行了 CNN 训练,并在 20 个独立病例上进行了测试。图像采用迭代重建强度 3 (QIR3)、临床常规 (Hr84) 和最清晰的可用头部内核 (Hr96) 进行重建。CNN 应用于使用 Hr96 和 QIR1 重建的图像。每个病例的三组图像(Hr84-QIR3、Hr96-QIR3 和 Hr96-CNN)由两名神经放射学专家随机审查,评估整体质量以及模小梁、镫骨脚板和耳内关节的轮廓:与 Hr96-QIR3 相比,CNN 减少了 80% 的噪音,与 Hr84-QIR3 相比,CNN 减少了 50% 的噪音,同时保持了高分辨率。与相同内核(Hr96-QIR3)的传统方法相比,Hr96-CNN 显著降低了图像噪声(从 204.63 HU 降至 47.35 HU),提高了 SSIM(从 0.72 升至 0.99)。Hr96-CNN 图像的整体质量高于 Hr84-QIR3 和 Hr96-QIR3(p 结论:Hr96-CNN 图像的整体质量高于 Hr84-QIR3 和 Hr96-QIR3:所提出的 CNN 能明显降低 UHR PCD-CT 中的图像噪声,使最清晰内核的使用成为可能。这一组合大大提高了诊断图像质量和解剖可视化效果:PCD = 光子计数探测器;UHR = 超高分辨率;IR = 迭代重建;CNN = 卷积神经网络;SSIM:结构相似性指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Arterial Spin-Labeling and DSC Perfusion MR Imaging in Pediatric Brain Tumors: A Systematic Review and Meta-Analysis. Diagnostic Performance of Renal Contrast Excretion on Early-Phase CT Myelography in Spontaneous Intracranial Hypotension. Prolonged Venous Transit on Perfusion Imaging is Associated with Longer Lengths of Stay in Acute Large Vessel Occlusions. Accuracy of an nnUNet neural network for the automatic segmentation of intracranial aneurysms, their parent vessels and major cerebral arteries from magnetic resonance imaging-Time of flight (MRI-TOF). Accuracy of Financial Disclosures by Scientific Presenters/Authors at the ASNR 2024 annual meeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1