{"title":"Metabolic regulation of 5-oxoproline for enhanced heat tolerance in perennial ryegrass.","authors":"Shuhan Lei, Stephanie Rossi, Zhimin Yang, Jingjin Yu, Bingru Huang","doi":"10.1007/s44154-024-00175-9","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroglutamic acid [(5-oxoproline (5-oxp)], a non-protein amino acid, can be converted to glutamate to regulate amino acid metabolism in plants. Its roles in plant adaptation to abiotic stresses, including heat stress, are not well understood. The objectives of this study were to determine whether exogenous application of 5-oxp could promote heat tolerance in cool-season perennial grass species and identify the major metabolic pathways that could be activated or responsive to 5-oxp for enhancing heat tolerance. Perennial ryegrass (Lolium perenne L.) plants were foliar-sprayed with 5-oxp or water (untreated control) prior to and during the exposure to heat stress (35/33 ℃, day/night temperature) or ambient temperature (25/22 ℃, day/night temperature, non-stress control) in controlled-environment growth chambers. Application of 5-oxp improved the heat tolerance of perennial ryegrass, as manifested by the chlorophyll content, photochemical efficiency, cell membrane stability, and antioxidant enzyme activities increasing by 31.2%, 25.7%, 37.2%, and 57.1-258.3%, as well as the reduction in hydrogen peroxide production by 36.8%. Metabolic profiling identified metabolites up-regulated by 5-oxp that are involved in the metabolic pathways of carbon assimilation in photosynthesis, glycolysis and the tricarboxylic acid cycle of respiration, proteinogenic amino acid metabolism, glutathione metabolism, and nucleotide metabolism for DNA or RNA synthesis and ATP generation. The up-regulation or activation of those metabolic processes could contribute to 5-oxp-mediated enhancement in the heat tolerance of perennial ryegrass.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"46"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-024-00175-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pyroglutamic acid [(5-oxoproline (5-oxp)], a non-protein amino acid, can be converted to glutamate to regulate amino acid metabolism in plants. Its roles in plant adaptation to abiotic stresses, including heat stress, are not well understood. The objectives of this study were to determine whether exogenous application of 5-oxp could promote heat tolerance in cool-season perennial grass species and identify the major metabolic pathways that could be activated or responsive to 5-oxp for enhancing heat tolerance. Perennial ryegrass (Lolium perenne L.) plants were foliar-sprayed with 5-oxp or water (untreated control) prior to and during the exposure to heat stress (35/33 ℃, day/night temperature) or ambient temperature (25/22 ℃, day/night temperature, non-stress control) in controlled-environment growth chambers. Application of 5-oxp improved the heat tolerance of perennial ryegrass, as manifested by the chlorophyll content, photochemical efficiency, cell membrane stability, and antioxidant enzyme activities increasing by 31.2%, 25.7%, 37.2%, and 57.1-258.3%, as well as the reduction in hydrogen peroxide production by 36.8%. Metabolic profiling identified metabolites up-regulated by 5-oxp that are involved in the metabolic pathways of carbon assimilation in photosynthesis, glycolysis and the tricarboxylic acid cycle of respiration, proteinogenic amino acid metabolism, glutathione metabolism, and nucleotide metabolism for DNA or RNA synthesis and ATP generation. The up-regulation or activation of those metabolic processes could contribute to 5-oxp-mediated enhancement in the heat tolerance of perennial ryegrass.