Phytotoxicity of Prussian blue nanoparticles to rice and the related defence mechanisms: In vivo observations and physiological and biochemical analysis
Kai Xu , Yilun Lan , Chenghua Xing , Yuchun Rao , Engao Zhu , Jianfang Yan , Shaobin Wang , Xi-Lin Wu , Miaozhen Cai , Xiaoguang Duan
{"title":"Phytotoxicity of Prussian blue nanoparticles to rice and the related defence mechanisms: In vivo observations and physiological and biochemical analysis","authors":"Kai Xu , Yilun Lan , Chenghua Xing , Yuchun Rao , Engao Zhu , Jianfang Yan , Shaobin Wang , Xi-Lin Wu , Miaozhen Cai , Xiaoguang Duan","doi":"10.1016/j.chemosphere.2024.143724","DOIUrl":null,"url":null,"abstract":"<div><div>While the nanotoxic effects on plants have been extensively studied, the underlying mechanisms of plant defense responses and resistance to nanostress remain insufficiently understood. Particularly, Prussian blue nanoparticles (PB NPs) have been extensively used in pigments, pharmaceuticals, electrocatalysis, biosensors and energy storage. However, the impact of PB NPs on plants’ health and growth are largely unknown. Herein, the phytotoxicity of PB NPs to rice and trace the uptake, accumulation and biotransformation of PB NPs was explored, along with the underlying defence mechanisms. The results showed that PB NPs (≥50 mg L<sup>−1</sup>) significantly inhibited the growth of rice seedling up to 16.16%, 27.80%, and 29.37% in plant height, shoot biomass and root biomass, respectively. The X-ray spectroscopic studies and <em>in vivo</em> elemental and particle-imaging demonstrated that PB NPs were transported through the cortex via xylem from root to shoot. However, most of the PB NPs and their transformation products were retained in the root, where they were blocked owing to root cell wall (RCW) remodeling, and 81.4%–83.4% of Fe accumulated in the RCW compared to 66.6% in the control. Specifically, PB NPs stimulated pectin methylesterase activity by promoting hydrogen peroxide production to participate in RCW remodeling. More interestingly, Si was specifically regulated to covalently bind to hemicellulose to form the Si-hemicellulose complex that strongly bound with PB NPs during RCW remodeling, resulting in the strong defense against PB NPs. These findings provide new insights into the phytotoxicity of artificial NPs and the defense mechanisms of plants.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143724"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524026249","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While the nanotoxic effects on plants have been extensively studied, the underlying mechanisms of plant defense responses and resistance to nanostress remain insufficiently understood. Particularly, Prussian blue nanoparticles (PB NPs) have been extensively used in pigments, pharmaceuticals, electrocatalysis, biosensors and energy storage. However, the impact of PB NPs on plants’ health and growth are largely unknown. Herein, the phytotoxicity of PB NPs to rice and trace the uptake, accumulation and biotransformation of PB NPs was explored, along with the underlying defence mechanisms. The results showed that PB NPs (≥50 mg L−1) significantly inhibited the growth of rice seedling up to 16.16%, 27.80%, and 29.37% in plant height, shoot biomass and root biomass, respectively. The X-ray spectroscopic studies and in vivo elemental and particle-imaging demonstrated that PB NPs were transported through the cortex via xylem from root to shoot. However, most of the PB NPs and their transformation products were retained in the root, where they were blocked owing to root cell wall (RCW) remodeling, and 81.4%–83.4% of Fe accumulated in the RCW compared to 66.6% in the control. Specifically, PB NPs stimulated pectin methylesterase activity by promoting hydrogen peroxide production to participate in RCW remodeling. More interestingly, Si was specifically regulated to covalently bind to hemicellulose to form the Si-hemicellulose complex that strongly bound with PB NPs during RCW remodeling, resulting in the strong defense against PB NPs. These findings provide new insights into the phytotoxicity of artificial NPs and the defense mechanisms of plants.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.