Novel Fused Pyrimidines as Potent Cyclin-Dependent Kinases Inhibitor for Gastric Adenocarcinoma: Combined In Vitro, In Silico Anticancer Studies

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemical Biology & Drug Design Pub Date : 2024-11-14 DOI:10.1111/cbdd.70013
Natarajan Saravanakumar, Arunagiri Sivanesan Aruna Poorani, Anantha Krishnan Dhanabalan, Selvam Sugapriya, Ganesan Kumaresan, Palaniswamy Suresh
{"title":"Novel Fused Pyrimidines as Potent Cyclin-Dependent Kinases Inhibitor for Gastric Adenocarcinoma: Combined In Vitro, In Silico Anticancer Studies","authors":"Natarajan Saravanakumar,&nbsp;Arunagiri Sivanesan Aruna Poorani,&nbsp;Anantha Krishnan Dhanabalan,&nbsp;Selvam Sugapriya,&nbsp;Ganesan Kumaresan,&nbsp;Palaniswamy Suresh","doi":"10.1111/cbdd.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Our research aims to design novel pyrimidine derivatives inspired by the common pyrimidine core found in many FDA-approved drugs. However, extensive prior research on the pyrimidine scaffold has made discovering new molecules more challenging. To overcome this obstacle, we employed a molecular hybridisation strategy, opting to hybridise tetralin and pyrimidine, recognising their potential in cancer therapeutics. The fused pyrimidine was synthesised through a base-mediated condensation of chalcone with amidine. The reaction conditions were further optimised for base, solvent, temperature and time to produce a series of 21 novel derivatives. These compounds were subsequently screened for anticancer activity against gastric adenocarcinoma cell lines using the MTT assay. Among the synthesised compounds, 2-(pyridin-3-yl)-4-(pyridin-3-yl)-5,6-dihydrobenzo[h]quinazoline <b>8b</b> and 4-(2-(pyridin-3-yl)-5,6 dihydrobenzo[h]quinazolin-4-yl) phenol <b>5g</b> exhibited potent anticancer activity compared to (R)-Roscovitine. Additionally, a molecular docking study was conducted to assess the reactivity of compound <b>5g</b>, revealing that the presence of a phenolic hydroxyl group enables hydrogen bonding with CDKs and enhances anticancer activity. Furthermore, the efficacy of compound <b>5g</b> was validated through an in vitro CDK2/cyclin A2 enzyme inhibition assay. Interestingly, the observed CDK2 inhibitory activity showed a good correlation with the corresponding value for the antiproliferative activity of the tested compounds.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our research aims to design novel pyrimidine derivatives inspired by the common pyrimidine core found in many FDA-approved drugs. However, extensive prior research on the pyrimidine scaffold has made discovering new molecules more challenging. To overcome this obstacle, we employed a molecular hybridisation strategy, opting to hybridise tetralin and pyrimidine, recognising their potential in cancer therapeutics. The fused pyrimidine was synthesised through a base-mediated condensation of chalcone with amidine. The reaction conditions were further optimised for base, solvent, temperature and time to produce a series of 21 novel derivatives. These compounds were subsequently screened for anticancer activity against gastric adenocarcinoma cell lines using the MTT assay. Among the synthesised compounds, 2-(pyridin-3-yl)-4-(pyridin-3-yl)-5,6-dihydrobenzo[h]quinazoline 8b and 4-(2-(pyridin-3-yl)-5,6 dihydrobenzo[h]quinazolin-4-yl) phenol 5g exhibited potent anticancer activity compared to (R)-Roscovitine. Additionally, a molecular docking study was conducted to assess the reactivity of compound 5g, revealing that the presence of a phenolic hydroxyl group enables hydrogen bonding with CDKs and enhances anticancer activity. Furthermore, the efficacy of compound 5g was validated through an in vitro CDK2/cyclin A2 enzyme inhibition assay. Interestingly, the observed CDK2 inhibitory activity showed a good correlation with the corresponding value for the antiproliferative activity of the tested compounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型融合嘧啶作为胃腺癌细胞周期蛋白依赖性激酶的强效抑制剂:体外和硅内联合抗癌研究
我们的研究旨在设计新型嘧啶衍生物,其灵感来自美国食品及药物管理局(FDA)批准的许多药物中常见的嘧啶核心。然而,之前对嘧啶支架的大量研究使得发现新分子变得更具挑战性。为了克服这一障碍,我们采用了分子杂交策略,选择杂交四氢萘和嘧啶,因为我们认识到它们在癌症治疗中的潜力。融合的嘧啶是通过碱介导的查耳酮与脒的缩合合成的。通过进一步优化碱、溶剂、温度和时间等反应条件,产生了一系列 21 种新型衍生物。随后,利用 MTT 试验筛选了这些化合物对胃腺癌细胞系的抗癌活性。在合成的化合物中,2-(吡啶-3-基)-4-(吡啶-3-基)-5,6-二氢苯并[h]喹唑啉 8b 和 4-(2-(吡啶-3-基)-5,6-二氢苯并[h]喹唑啉-4-基)苯酚 5g 与 (R)-Roscovitine 相比表现出了很强的抗癌活性。此外,还进行了分子对接研究以评估化合物 5g 的反应性,结果表明,酚羟基的存在可使其与 CDK 发生氢键结合,从而增强抗癌活性。此外,还通过体外 CDK2/cyclin A2 酶抑制试验验证了化合物 5g 的功效。有趣的是,观察到的 CDK2 抑制活性与受试化合物抗增殖活性的相应值有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
期刊最新文献
Cover Image Edaravone Ameliorate Inflammation in Vitamin D3 and High Fat Diet Induced Atherosclerosis in Rat via Alteration of Inflammatory Pathway and Gut Microbiota Herbacetin Inhibits Human Fructose 1,6-Bisphosphatase Among a Panel of Chromone Derivatives and Pyrazoles, Demonstrating Positive Effects on Insulin-Resistant HepG2 Cells Innovative Photoprotection Strategy: Development of 2-(Benzoxazol-2-Yl)[(2-Hydroxynaphthyl)Diazenyl] Phenol Derivatives for Comprehensive Absorption of UVB, UVA, and Blue Light Novel Fused Pyrimidines as Potent Cyclin-Dependent Kinases Inhibitor for Gastric Adenocarcinoma: Combined In Vitro, In Silico Anticancer Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1