Label-Free Detection of Breast Phyllodes Tumors Based on Multiphoton Microscopy.

Xi Chen, Junzhen Jiang, Liwen Hu, Xiaoli Su, Zheng Zhang, Xiong Zhang, Tao Zhong, Jianping Huang, Shulian Wu, Lina Liu, Jianxin Chen, Liqin Zheng, Xingfu Wang
{"title":"Label-Free Detection of Breast Phyllodes Tumors Based on Multiphoton Microscopy.","authors":"Xi Chen, Junzhen Jiang, Liwen Hu, Xiaoli Su, Zheng Zhang, Xiong Zhang, Tao Zhong, Jianping Huang, Shulian Wu, Lina Liu, Jianxin Chen, Liqin Zheng, Xingfu Wang","doi":"10.1002/jbio.202400392","DOIUrl":null,"url":null,"abstract":"<p><p>Phyllodes tumors (PTs) are rare breast stroma neoplasms, and their accurate identification at various stages is essential for personalized patient treatment. In this study, multiphoton microscopy (MPM) with two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging was used for label-free detection and differentiation of PTs and normal breast tissue. An automated image processing strategy was developed to quantify changes in collagen fiber morphology within the stroma and boundary of PTs, establishing optical diagnostic characteristics of PTs using MPM. The results demonstrated that MPM could be used for the detection of different stages of PTs, and the morphological alterations in collagen fibers could serve as critical indicators of PT malignancy, offering new insights for the diagnosis and grading of benign, borderline, and malignant PTs. It lays the groundwork for the future application of compact MPM for the rapid detection and diagnosis of PTs.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400392"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phyllodes tumors (PTs) are rare breast stroma neoplasms, and their accurate identification at various stages is essential for personalized patient treatment. In this study, multiphoton microscopy (MPM) with two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging was used for label-free detection and differentiation of PTs and normal breast tissue. An automated image processing strategy was developed to quantify changes in collagen fiber morphology within the stroma and boundary of PTs, establishing optical diagnostic characteristics of PTs using MPM. The results demonstrated that MPM could be used for the detection of different stages of PTs, and the morphological alterations in collagen fibers could serve as critical indicators of PT malignancy, offering new insights for the diagnosis and grading of benign, borderline, and malignant PTs. It lays the groundwork for the future application of compact MPM for the rapid detection and diagnosis of PTs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多光子显微镜的乳腺植物瘤无标记检测技术
植物瘤(PTs)是一种罕见的乳腺间质肿瘤,在不同阶段对其进行准确识别对于患者的个性化治疗至关重要。在这项研究中,多光子显微镜(MPM)与双光子激发荧光(TPEF)和二次谐波发生(SHG)成像被用于无标记检测和区分PTs和正常乳腺组织。研究人员开发了一种自动图像处理策略,用于量化PTs基质和边界内胶原纤维形态的变化,从而利用MPM建立PTs的光学诊断特征。结果表明,MPM 可用于检测不同阶段的 PT,胶原纤维的形态变化可作为 PT 恶性的关键指标,为良性、边缘性和恶性 PT 的诊断和分级提供了新的见解。该研究为今后应用紧凑型 MPM 快速检测和诊断 PT 奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Collagen by Machine Learning Improved Photoacoustic Spectral Analysis for Breast Cancer Diagnostics: Feasibility Studies With Murine Models. Effects of 1267 nm Illumination on Microcirculation Regulatory Mechanisms. Enhancing Spatial Resolution of Three-Dimensional Pulse Waves Through Advanced Photometric Stereo Techniques. Measuring Metabolic Changes in Cancer Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis. Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1