Ethan Schonfeld, John Choi, Andrew Tran, Lily H Kim, Michael Lim
{"title":"The landscape of immune checkpoint inhibitor clinical trials in glioblastoma: A systematic review.","authors":"Ethan Schonfeld, John Choi, Andrew Tran, Lily H Kim, Michael Lim","doi":"10.1093/noajnl/vdae174","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is characterized by rapid tumor growth and high invasiveness. The tumor microenvironment of glioblastoma is highly immunosuppressive with both intrinsic and adaptive resistance mechanisms that result in disease recurrence despite current immunotherapeutic strategies.</p><p><strong>Methods: </strong>In this systematic review of clinical trials involving immunotherapy for glioblastoma using ClinicalTrials.gov and PubMed databases from 2016 and onward, we explore immunotherapeutic modalities involving immune checkpoint blockade (ICB).</p><p><strong>Results: </strong>A total of 106 clinical trials were identified, 18 with clinical outcomes. ICB in glioblastoma has failed to improve overall survival compared to the current standard of care, including those therapies inhibiting multiple checkpoints. Among all immune checkpoint trials, targets included programmed cell death protein-1 (PD-1) (35/48), PD-L1 (12/48), cytotoxic T-lymphocyte-associated protein-4 (6/48), TIGIT (2/48), B7-H3 (2/48), and TIM-3 (1/48). Preliminary results from combination immunotherapies (32.1% of all trials) demonstrated improved treatment efficacy compared to monotherapy, specifically those combining checkpoint therapy with another immunotherapy modality.</p><p><strong>Conclusions: </strong>Clinical trials involving ICB strategies for glioblastoma have not demonstrated improved survival. Comparison of therapeutic efficacy across trials was limited due to heterogeneity in the study population and outcome operationalization. Standardization of future trials could facilitate comparison across immunotherapy modalities for robust meta-analysis. Current immunotherapy trials have shifted focus toward combination strategies; preliminary results suggest that they are more encouraging than mono-modality immunotherapies. Given the intrinsic heterogeneity of glioblastoma, the utilization of immune markers will be key for the development of future immunotherapy approaches.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae174"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioblastoma is characterized by rapid tumor growth and high invasiveness. The tumor microenvironment of glioblastoma is highly immunosuppressive with both intrinsic and adaptive resistance mechanisms that result in disease recurrence despite current immunotherapeutic strategies.
Methods: In this systematic review of clinical trials involving immunotherapy for glioblastoma using ClinicalTrials.gov and PubMed databases from 2016 and onward, we explore immunotherapeutic modalities involving immune checkpoint blockade (ICB).
Results: A total of 106 clinical trials were identified, 18 with clinical outcomes. ICB in glioblastoma has failed to improve overall survival compared to the current standard of care, including those therapies inhibiting multiple checkpoints. Among all immune checkpoint trials, targets included programmed cell death protein-1 (PD-1) (35/48), PD-L1 (12/48), cytotoxic T-lymphocyte-associated protein-4 (6/48), TIGIT (2/48), B7-H3 (2/48), and TIM-3 (1/48). Preliminary results from combination immunotherapies (32.1% of all trials) demonstrated improved treatment efficacy compared to monotherapy, specifically those combining checkpoint therapy with another immunotherapy modality.
Conclusions: Clinical trials involving ICB strategies for glioblastoma have not demonstrated improved survival. Comparison of therapeutic efficacy across trials was limited due to heterogeneity in the study population and outcome operationalization. Standardization of future trials could facilitate comparison across immunotherapy modalities for robust meta-analysis. Current immunotherapy trials have shifted focus toward combination strategies; preliminary results suggest that they are more encouraging than mono-modality immunotherapies. Given the intrinsic heterogeneity of glioblastoma, the utilization of immune markers will be key for the development of future immunotherapy approaches.