Zingerone effects on arsenic-induced glucose intolerance and hepatotoxicity in mice via suppression of oxidative stress-mediated hepatic inflammation and apoptosis
{"title":"Zingerone effects on arsenic-induced glucose intolerance and hepatotoxicity in mice via suppression of oxidative stress-mediated hepatic inflammation and apoptosis","authors":"Mobina Hafezizadeh , Maryam Salehcheh , Shokooh Mohtadi , Esrafil Mansouri , Mohammad Javad Khodayar","doi":"10.1016/j.jtemb.2024.127562","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Arsenic (As), a poisonous metalloid, is widely distributed in air, water, and soil and has been associated with the occurrence of diabetes and liver toxicity. Zingerone (ZNG), one of the active compounds in ginger, has several pharmacological benefits such as antioxidant and anti-inflammatory characteristics. The objective of this research was to assess the protective role of ZNG against arsenic (As)-induced glucose intolerance (GI) and hepatotoxicity in mice.</div></div><div><h3>Methods</h3><div>Male NMRI mice were treated with ZNG (25, 50, and 100 mg/kg, oral gavage for 29 days) before As administration (10 mg/kg, oral gavage for 29 days). On the 29th day, fasting blood glucose (FBG) and glucose tolerance test were measured. The animals were euthanized (day 30), and samples from blood and tissue (liver and pancreas) were gathered for further evaluations.</div></div><div><h3>Results</h3><div>Administration of ZNG inhibited As-induced elevation of FBG and GI. Moreover, hepatic tissue damage and decreased Langerhans islets' diameter caused by As administration were improved by ZNG treatment. Pretreatment with ZNG attenuated the elevation of serum liver enzymes induced by As (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase). Also, the reduction in total thiol content, as well as the decline in antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) and the increase in lipid peroxidation marker (thiobarbituric acid reactive substances) in the liver tissue of As-exposed mice were reversed in ZNG-treated mice. Furthermore, ZNG prevented the increase of hepatic inflammatory markers (nitric oxide and tumor necrosis factor-alpha levels, and protein expression of nuclear factor-kappa B) and apoptosis-related marker (caspase-3 protein expression) in As-treated mice.</div></div><div><h3>Conclusions</h3><div>This study has provided evidence indicating that ZNG can act as a beneficial agent in preventing As-induced hepatotoxicity and diabetes.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127562"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X24001822","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Arsenic (As), a poisonous metalloid, is widely distributed in air, water, and soil and has been associated with the occurrence of diabetes and liver toxicity. Zingerone (ZNG), one of the active compounds in ginger, has several pharmacological benefits such as antioxidant and anti-inflammatory characteristics. The objective of this research was to assess the protective role of ZNG against arsenic (As)-induced glucose intolerance (GI) and hepatotoxicity in mice.
Methods
Male NMRI mice were treated with ZNG (25, 50, and 100 mg/kg, oral gavage for 29 days) before As administration (10 mg/kg, oral gavage for 29 days). On the 29th day, fasting blood glucose (FBG) and glucose tolerance test were measured. The animals were euthanized (day 30), and samples from blood and tissue (liver and pancreas) were gathered for further evaluations.
Results
Administration of ZNG inhibited As-induced elevation of FBG and GI. Moreover, hepatic tissue damage and decreased Langerhans islets' diameter caused by As administration were improved by ZNG treatment. Pretreatment with ZNG attenuated the elevation of serum liver enzymes induced by As (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase). Also, the reduction in total thiol content, as well as the decline in antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) and the increase in lipid peroxidation marker (thiobarbituric acid reactive substances) in the liver tissue of As-exposed mice were reversed in ZNG-treated mice. Furthermore, ZNG prevented the increase of hepatic inflammatory markers (nitric oxide and tumor necrosis factor-alpha levels, and protein expression of nuclear factor-kappa B) and apoptosis-related marker (caspase-3 protein expression) in As-treated mice.
Conclusions
This study has provided evidence indicating that ZNG can act as a beneficial agent in preventing As-induced hepatotoxicity and diabetes.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.