Dipjyoti Sarma , Kaushik K. Nath , Sritam Biswas , Gazi Ameen Ahmed , Pabitra Nath
{"title":"Plasma treated bimetallic nanofibers as sensitive SERS platform and deep learning model for detection and classification of antibiotics","authors":"Dipjyoti Sarma , Kaushik K. Nath , Sritam Biswas , Gazi Ameen Ahmed , Pabitra Nath","doi":"10.1016/j.saa.2024.125417","DOIUrl":null,"url":null,"abstract":"<div><div>Design of a sensitive, cost-effective SERS substrate is critical for probing analyte in trace concentration in real field environment. Present work reports the fabrication of an oxygen (O<sub>2</sub>) plasma treated bimetallic nanofibers as a sensitive SERS platform. In contrast to the conventional nanofiber-based SERS platform, the proposed plasma-treated bimetallic nanofibers-based SERS platform offers high sensitivity and reproducibility characteristics. On top, the use of bimetallic nanoparticles provides a synergistic effect, contributing to both electromagnetic and chemical enhancement to SERS performance and the plasma treatment contributes to the controlled exposure of the embedded nanoparticles (NPs) to the analyte thereby enhancing the overall sensitivity of the proposed technique. With standard Raman active probe molecules – 1,2-bis(4-pyridyl) ethylene (BPE) and rhodamine-6G (R6G) the limit of detection (LOD) and the limit of quantification (LOQ) of the proposed sensing platform are estimated to be 3.8 nM and 11.6 nM respectively. The enhancement factor (EF) of the designed sensing platform is calculated to be ∼10<sup>8</sup> with a maximum signal variations of 5 %. The applicability of the designed SERS substrate has been realized through detection of two antibiotics – fluconazole (FLU) and lincomycin (LIN) widely used in poultry farms. Furthermore, a deep learning model – artificial neural network (ANN) has been implemented for effective classification of the analyte molecules from a mixed sample.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125417"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138614252401583X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Design of a sensitive, cost-effective SERS substrate is critical for probing analyte in trace concentration in real field environment. Present work reports the fabrication of an oxygen (O2) plasma treated bimetallic nanofibers as a sensitive SERS platform. In contrast to the conventional nanofiber-based SERS platform, the proposed plasma-treated bimetallic nanofibers-based SERS platform offers high sensitivity and reproducibility characteristics. On top, the use of bimetallic nanoparticles provides a synergistic effect, contributing to both electromagnetic and chemical enhancement to SERS performance and the plasma treatment contributes to the controlled exposure of the embedded nanoparticles (NPs) to the analyte thereby enhancing the overall sensitivity of the proposed technique. With standard Raman active probe molecules – 1,2-bis(4-pyridyl) ethylene (BPE) and rhodamine-6G (R6G) the limit of detection (LOD) and the limit of quantification (LOQ) of the proposed sensing platform are estimated to be 3.8 nM and 11.6 nM respectively. The enhancement factor (EF) of the designed sensing platform is calculated to be ∼108 with a maximum signal variations of 5 %. The applicability of the designed SERS substrate has been realized through detection of two antibiotics – fluconazole (FLU) and lincomycin (LIN) widely used in poultry farms. Furthermore, a deep learning model – artificial neural network (ANN) has been implemented for effective classification of the analyte molecules from a mixed sample.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.